食事と体組成に関する国際スポーツ栄養学会のポジションスタンド(後編)

 食事と体組成に関する国際スポーツ栄養学会のポジションスタンド(前編)食事と体組成に関する国際スポーツ栄養学会のポジションスタンド(中編)に引き続いて最後の全訳を行う.

International society of sports nutrition position stand: diets and body composition

要約と結論

要約

 多種多様な食事が体組成に与える影響を理解することが,研究者や実務家にとって最も重要である.結局のところ,データの解釈と手続きの実施が顧客や患者,一般人の前進を決定する.幸いなことに,現在の一連の研究には根拠に基づく理論と実践をガイドできるだけの情報が豊富に存在する.体組成の評価方法は精度,信頼性およびアクセスのしやすさのレベルにより異なる.それぞれの方法には長所と短所がある.すべての状況に適した一つの方法というものは存在しない.そうではなく,実務家や研究者は,当面の個人のニーズに対して最も現実的な選択肢を採用しなければならない.それは,経費や技術者のスキルなどの本質的な制約や物流を考慮して一貫性を保つためである.多様な食事の原型は,総エネルギーと主要栄養素との広範囲の分配にある.各タイプには様々な程度の裏付けとなるデータと,様々な程度の根拠のない主張がある.減量および増量の作用機序(すなわち,持続的な低カロリー状態と高カロリー状態)の観点から,共通項は食事療法を通過するが,意図した目的を達成するための潜在的に独自の手段も存在する(例えば,満腹感,コンプライアンスの容易さ,トレーニング需要の支持を容易にする因子など).

結論と推奨

  • 食事には広大で多数のものが存在する.さらに,主要な食事の原型に分類される多数の亜種が存在する.実務家,臨床に携わる人および研究者は次のことを把握し続ける必要がある.すなわち,顧客,患者および一般人を科学的根拠に基づく実践かつ教育へと導くという目的のために,各原型の根底にある根拠と,それに対抗する主張とを把握することである.
  • 全ての体組成評価法には長所と短所がある.ゆえに,評価法の選択には,実用性とコスト,侵襲性,利用しやすさ,再現性および技術者のスキル要件といった法外なコストの可能性との整合性を考慮する必要がある.結局,顧客や患者,研究問題の需要は選択された方法と一致するはずであり,個別化と環境への考慮が欠かせない.
  •  主に脂肪量の減少(および初期の体水分減少を超えた減量)に焦点を当てた食事は,持続的なカロリー不足の基本的な機序のもとで機能する.この正味の低カロリーバランスは線形にまたは毎日,またはその週にわたって非線形的に課すことができる.ベースラインの脂肪量レベルが高いほど,カロリー不足がより積極的に課される可能性がある [27]. 被検者が痩せていくにつれて,体重減少率が遅いほど,除脂肪量を良好に維持することができる.例えば Garthe らの例が体重減少率が毎週 0.7 % 減少して 1.4 % を上回ったように [138]. Helms らも同様にコンテストの準備期間におけるボディビルダーの週あたり体重 0.5 – 1.0 % の割合を示唆している [140]. 
  • 文献的には除脂肪量の増加は低カロリー状態期間中に報告されているにもかかわらず,除脂肪量増加に焦点を当てた食事は同化プロセスを容易にして,増加するトレーニング需要に応えるために持続的なカロリー余剰により最適化されている.余剰カロリーの組成と規模および,運動プログラムを含めた被検者のトレーニング状況は,増量の性質に影響する.より大きな余剰カロリーはトレーニング未経験の被検者にはより最適であり,彼らにとっては除脂肪量増量 [136] のさらに劇的で高レベルの NEAT の前進のために準備されている [133]. 一方で,より進んだトレーニーにとっては少なめの余剰カロリーが適切であり,彼らには積極的な高カロリー状態の間に必要以上の脂肪量増加の高いリスクがある [135]. 全てのトレーニーがこの一般的なフレームワークに収まるとは限らないことに注意されたい.筋肉の増量を推進するために,一部の初心者はより少ない余剰カロリーを要する一方で,一部の上級トレーニーはより大きな余剰カロリーを要する.個人の反応の不可避の多様性にプログラムを仕立てることが実務家の仕事である.
  • 広範囲の食事アプローチ(低脂質から低炭水化物・ケトジェニックおよびその中間の全てのポイント)が体組成を改善するのに等しく効果的である可能性があり,これによりプログラムデザインによる柔軟性をもたらす.今日に至るまで,低炭水化物食やケトジェニック食に対して,対照群の入院患者の等カロリー食では,群間でたんぱく質を一致させた比較で臨床的に意義のある脂肪減少や熱的優位性を報告したものは存在しない [60]. その蓄積された静脈内の根拠は,肥満の炭水化物・インスリン仮説を無効化する.しかしながら,ケトジェニック食には食欲抑制の可能性が示されており,ケトジェニック食を摂取している被検者はカロリー制限なしにもかかわらず自発的に摂取量が減少していることから例示されているところである.スポーツのパフォーマンスは,そのスポーツの性質に応じた炭水化物の利用可能性に対する様々な需要を伴う,独立した目的である.炭水化物の制限は,特に持久性のスポーツにとって,人間工学的な可能性がある.炭水化物制限の筋力とパワーへの影響には,さらなる研究の価値がある.
  • 運動している人にとって,現在の推奨をはるかに超えるレベルまで食事たんぱく質を増やすことで体組成を改善させる可能性がある.2007 年当初の ISSN のたんぱく質摂取量 (1.4 – 2.0 g/kg) に関する立場は,その後の運動集団での調査が同様の需要に到達し,さらに支持を広げている [88, 140, 142, 143, 144, 145]. 痩せた筋力トレーニング経験のある被検者が低カロリー状態で筋肉を最大限保持するためには,より高いたんぱく質摂取量(除脂肪量 2.3 – 3.1 g/kg)を要する可能性がある [88]. 新しい研究では超高用量のたんぱく質摂取量 (> 3 g/kg) の研究の示すところでは,食事たんぱく質の既知の熱的効果,満腹感,除脂肪量維持効果は,筋力トレーニング経験のある被検者では増幅される可能性があるという.いくつかの可能性として,たんぱく質を目的として外来患者における余剰カロリーを設定することは,結果として等カロリーバランスに落ち着くこととなった.それは満腹感を経由する総カロリー減少,熱放散の増加およびまたは脂肪量減少と同時の除脂肪量増加による [89, 90, 92]. 
  • 時間制限の食事(間欠的絶食の変法)を筋力トレーニングと組み合わせると,これまで示してきた結果を混合した新しい研究分野となる [106, 107]. しかしながら,間欠的なカロリー制限の試験に関する文献は,全体としては,体組成改善を目的とした毎日のカロリー制限を超えるほどの有意な利点を示唆してはいない [108]. したがって,カロリー制限に関するプログラミングを線形で行うか非線形で行うかは,個人の嗜好,許容度および運動の目標により定義すべきである.脂肪量減少中に除脂肪量を維持(または増量)するという目的を達成するには,十分なたんぱく質,筋力トレーニングおよび適切な体重減少率に主な焦点を当てるべきである.
  • 長期的に食事療法を成功させられるかどうかは,恒常性駆動の緩和因子をいかに効果的に抑制・回避できるかにかかっている.脂肪量減少のための低カロリー状態は結果として適応熱産生をもたらした.予測されたエネルギー消費量の減少よりも大きかった(除脂肪量および脂肪量の減少を考慮した後の TDEE における予測値を 10 – 15 % 下回っていた).しかしながら,適応熱産生を示した既存の研究の大部分は積極的なカロリー制限を組み合わせた食事を含んでいて,たんぱく質摂取量を絞り,また筋力トレーニングを行っていない.それゆえ,本質的に代謝を遅らせる完全な嵐を起こしている.筋力トレーニングと適切なたんぱく質を慎重に包含した研究では,非常に低カロリーの摂取にもかかわらず,適応熱産生 [25] および除脂肪量喪失を回避できた [26]. 

展望と将来の指針

 正しい量の焦点と努力を生産的に指示するためには,多様なプログラミング要素の適切な「全体像」の視座を維持することが重要である.体組成における重要度や影響度で栄養学的因子をランクづけする際には,ケーキの比喩はシンプルで鮮やかであり,また記憶に残りやすい.ケーキ本体は 1 日の主要栄養素(および微量栄養素)の総合であり,粉砂糖はその日を通じての栄養摂取の具体的なタイミングと分配であり,ケーキにふりかけるチップはトレーニーの競争力を強化するのを手助けするサプリメントである.理想的ではあるものの必ずしも実現可能ではないシナリオとして,顧客や患者へのケアへの集学的アプローチがある(例.栄養士,パーソナルトレーナー,心理学者,医師).これにより専門知識の最も効率的な利用が可能となり,多様な生活様式の面をカバーし,必要な時には医学的介入も可能となる [146]. 

 体組成における食事の影響に関する研究には多くのグレーの領域と未調査の経路が残されている.女性や高齢者に関する研究はまだ一般には不足している.筋力トレーニングと持久性トレーニングを組み合わせた様々なエネルギーバランスにおける異なる日内食事頻度および栄養成分の分布の影響に関する研究はまだかなり少ない.一週間を通じた線形対非線形の主要栄養素の摂取は,運動と組み合わせると,現実の世界では広く実践されているにもかかわらず,まだ研究の未開発分野である.したがって,我々の現在の知見は静的なままであっても,研究の行進が続く以上,研究でも現場でも科学者はモデルや信念の修正と歪曲に警戒しつつも心を開いていなくてはならない.

略語

2C Two-compartment model
3C Three-compartment model
4C Four-compartment model
AMDR Acceptable Macronutrient Distribution Ranges
AT Adaptive thermogenesis
BIA Bioelectrical impedance analysis
BIS Bioimpedance spectroscopy
BMR Basal metabolic rate
CHO Carbohydrate
CICO Calories-in/calories-out
EAT Exercise activity thermogenesis
EE Energy expenditure
FFM Fat-free mass, used interchangeably with lean mass (LM) according to how it was reported in the literature
FM Fat mass
HP High-protein
IER Intermittent energy restriction
IF Intermittent fasting
KD Ketogenic diet
LCD Low-carbohydrate diet
LM Lean mass
LP Low-protein
NEAT Non-exercise activity thermogenesis
PUFA Polyunsaturated fatty acid
RDA Recommended dietary allowance
REE Resting energy expenditure
RMR Resting metabolic rate
SFA Saturated fatty acid
SM Skeletal muscle
TBW Total body water
TDEE Total daily energy expenditure
TEE Thermic effect of exercise
TEF Thermic effect of food
VLED Very-low-energy diet

参考文献

  1. Park B, Yoon J. Relative skeletal muscle mass is associated with development of metabolic syndrome. Diabetes Metab J. 2013;37(6):458–64. doi: 10.4093/dmj.2013.37.6.458.[PMC free article] [PubMed] [CrossRef]

 

  1. Ho-Pham L, Nguyen U, Nguyen T. Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab. 2014;99(1):30–8. doi: 10.1210/jc.2013-3190.[PubMed] [CrossRef]

 

  1. Lee J, Hong Y, Shin H, Lee W. Associations of sarcopenia and sarcopenic obesity with metabolic syndrome considering both muscle mass and muscle strength. J Prev Med Public Health. 2016;49(1):35–44. doi: 10.3961/jpmph.15.055. [PMC free article][PubMed] [CrossRef]

 

  1. Wolfe R. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84(3):475–82. [PubMed]

 

  1. Wang Z, Pierson RJ, Heymsfield S. The five-level model: a new approach to organizing body-composition research. Am J Clin Nutr. 1992;56:19–28. [PubMed]

 

  1. Lee S, Gallagher D. Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care. 2008;11(5):566–72. doi: 10.1097/MCO.0b013e32830b5f23. [PMC free article][PubMed] [CrossRef]

 

  1. Toomey C, McCormack W, Jakeman P. The effect of hydration status on the measurement of lean tissue mass by dual-energy X-ray absorptiometry. Eur J Appl Physiol. 2017;117(3):567–74. doi: 10.1007/s00421-017-3552-x. [PubMed] [CrossRef]

 

  1. Bone J, Ross M, Tomcik K, Jeacocke N, Hopkins W, Burke L. Manipulation of muscle creatine and glycogen changes DXA estimates of body composition. Med Sci Sports Exerc. 2016. [Epub ahead of print]. [PubMed]

 

  1. Duren D, Sherwood R, Czerwinski S, Lee M, Choh A, Siervogel R, et al. Body composition methods: comparisons and interpretation. J Diabetes Sci Technol. 2008;2(6):1139–46. doi: 10.1177/193229680800200623. [PMC free article] [PubMed] [CrossRef]

 

  1. Wagner D, Heyward V. Techniques of body composition assessment: a review of laboratory and field methods. Res Q Exerc Sport. 1999;70(2):135–49. doi: 10.1080/02701367.1999.10608031.[PubMed] [CrossRef]

 

  1. Ackland T, Lohman TG, Sundgot-Borgen J, Maughan RJ, Meyer NL, Stewart AD, et al. Current status of body composition assessment in sport: Review and position statement on behalf of the Ad Hoc research working group on body composition health and performance, under the auspices of the I.O.C. medical commission. Sports Med. 2012;42(3):227–49. doi: 10.2165/11597140-000000000-00000. [PubMed] [CrossRef]

 

  1. S M, Lazović B, Delić M, Lazić J, Aćimović T, Brkić P. Body composition assessment in athletes: a systematic review. Med Pregl. 2014;67(7-8):255–60. doi: 10.2298/MPNS1408255M.[PubMed] [CrossRef]

 

  1. Wells J, Fewtrell M. Measuring body composition. Arch Dis Child. 2006;91(7):612–7. doi: 10.1136/adc.2005.085522.[PMC free article] [PubMed] [CrossRef]

 

  1. Schoenfeld B, Aragon A, Moon J, Krieger J, Tiryaki-Sonmez G. Comparison of amplitude-mode ultrasound versus air displacement plethysmography for assessing body composition changes following participation in a structured weight-loss programme in women. Clin Physiol Funct Imaging. 2016. doi: 10.1111/cpf.12355. [PubMed]

 

  1. Williams J, Wells J, Wilson C, Haroun D, Lucas A, Fewtrell M. Evaluation of Lunar Prodigy dual-energy X-ray absorptiometry for assessing body composition in healthy persons and patients by comparison with the criterion 4-component model. Am J Clin Nutr. 2006;83(5):1047–54. [PubMed]

 

  1. Smith-Ryan A, Blue M, Trexler E, Hirsch K. Utility of ultrasound for body fat assessment: validity and reliability compared to a multicompartment criterion. Clin Physiol Funct Imaging. 2016. doi: 10.1111/cpf.12402. [PMC free article][PubMed]

 

  1. Wagner D. Ultrasound as a tool to assess body fat. J Obes. 2013. doi: 10.1155/2013/280713. [PMC free article] [PubMed]

 

  1. Buchholz A, Bartok C, Schoeller D. The validity of bioelectrical impedance models in clinical populations. Nutr Clin Pract. 2004;19(5):433–46. doi: 10.1177/0115426504019005433.[PubMed] [CrossRef]

 

  1. Bosy-Westphal A, Schautz B, Later W, Kehayias J, Gallagher D, Müller M. What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in a healthy adult population. Eur J Clin Nutr. 2013;67(Suppl 1):S14-21. [PubMed]

 

  1. Toomey CC A, Hughes K, Norton C, Jakeman P. A review of body composition measurement in the assessment of health. Top Clin Nutr. 2015;30(1):16–32. doi: 10.1097/TIN.0000000000000017. [CrossRef]

 

  1. Ar L. Formula food-reducing diets:a new evidence-based addition to the weight management tool box. Nutr Bull. 2014;39(3):238–46. doi: 10.1111/nbu.12098. [PMC free article][PubMed] [CrossRef]

 

  1. Tsai A, Wadden T. The evolution of very-low-calorie diets: an update and meta-analysis. Obesity (Silver Spring) 2006;14(8):1283–93. doi: 10.1038/oby.2006.146. [PubMed] [CrossRef]

 

  1. Chang J, Kashyap S. The protein-sparing modified fast for obese patients with type 2 diabetes: what to expect. Cleve Clin J Med. 2014;81(9):557–65. doi: 10.3949/ccjm.81a.13128. [PubMed] [CrossRef]

 

  1. Saris W. Very-low-calorie diets and sustained weight loss. Obes Res. 2001;9(Suppl 4):295S–301S. doi: 10.1038/oby.2001.134.[PubMed] [CrossRef]

 

  1. Bryner R, Ullrich I, Sauers J, Donley D, Hornsby G, Kolar M, et al. Effects of resistance vs. aerobic training combined with an 800 calorie liquid diet on lean body mass and resting metabolic rate. J Am Coll Nutr. 1999;18(2):115–21. doi: 10.1080/07315724.1999.10718838. [PubMed] [CrossRef]

 

  1. Donnelly J, Sharp T, Houmard J, Carlson M, Hill J, Whatley J, et al. Muscle hypertrophy with large-scale weight loss and resistance training. Am J Clin Nutr. 1993;58(4):561–5. [PubMed]

 

  1. Nackers L, Ross K, Perri M. The association between rate of initial weight loss and long-term success in obesity treatment: does slow and steady win the race? Int J Behav Med. 2010;17(3):161–7. doi: 10.1007/s12529-010-9092-y. [PMC free article] [PubMed] [CrossRef]

 

  1. JE D, J J, S G. Diet and body composition. Effect of very low calorie diets and exercise. Sports Med. 1991;12(4):237–49. doi: 10.2165/00007256-199112040-00003. [PubMed] [CrossRef]

 

  1. Makris A, Foster G. Dietary approaches to the treatment of obesity. Psychiatr Clin North Am. 2011;34(4):813–27. doi: 10.1016/j.psc.2011.08.004. [PMC free article] [PubMed] [CrossRef]

 

  1. Manore M. Exercise and the institute of medicine recommendations for nutrition. Curr Sports Med Rep. 2005;4(4):193–8. doi: 10.1097/01.CSMR.0000306206.72186.00.[PubMed] [CrossRef]

 

  1. La Berge A. How the ideology of low fat conquered America. J Hist Med Allied Sci. 2008;63(2):139–77. doi: 10.1093/jhmas/jrn001. [PubMed] [CrossRef]

 

  1. 2015 Dietary Guidelines Advisory Committee DGAC MEETING 1: Materials and Presentations. History of Dietary Guidance Development in the United States and the Dietary Guidelines for Americans. Available from: https://health.gov/dietaryguidelines/2015-binder/meeting1/docs/Minutes_DGAC_Mtg_1_508.pdf.

 

  1. USDA, USDHHS. 2015 – 2020 Dietary Guidelines for Americans, 8th Edition: U.S. Government Printing Office; 2015. Available from: https://www.cnpp.usda.gov/2015-2020-dietary-guidelines-americans.

 

  1. Hooper LAA, Bunn D, Brown T, Summerbell CD, Skeaff CM. Effects of total fat intake on body weight. Cochrane Database Syst Rev. 2015;7(8):CD011834. [PubMed]

 

  1. Lissner L, Levitsky D, Strupp B, Kalkwarf H, Roe D. Dietary fat and the regulation of energy intake in human subjects. Am J Clin Nutr. 1987;46(6):886–92. [PubMed]

 

  1. Kendall A, Levitsky D, Strupp B, Lissner L. Weight loss on a low-fat diet: consequence of the imprecision of the control of food intake in humans. Am J Clin Nutr. 1991;53(5):1124–9. [PubMed]

 

  1. Karl J, Roberts S. Energy density, energy intake, and body weight regulation in adults. Adv Nutr. 2014;5(6):835–50. doi: 10.3945/an.114.007112. [PMC free article] [PubMed] [CrossRef]

 

  1. Saquib N, Natarajan L, Rock C, Flatt S, Madlensky L, Kealey S, et al. The impact of a long-term reduction in dietary energy density on body weight within a randomized diet trial. Nutr Cancer. 2008;60(1):31–8. doi: 10.1080/01635580701621320.[PMC free article] [PubMed] [CrossRef]

 

  1. Stubbs R, Whybrow S. Energy density, diet composition and palatability: influences on overall food energy intake in humans. Physiol Behav. 2004;81(5):755–64. doi: 10.1016/j.physbeh.2004.04.027. [PubMed] [CrossRef]

 

  1. Huang R, Huang C, Hu F, Chavarro J. Vegetarian diets and weight reduction: a meta-analysis of randomized controlled trials. J Gen Intern Med. 2016;31(1):109–16. doi: 10.1007/s11606-015-3390-7. [PMC free article] [PubMed] [CrossRef]

 

  1. Gardner C, Kiazand A, Alhassan S, Kim S, Stafford R, Balise R, et al. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. JAMA. 2007;297(9):969–77. doi: 10.1001/jama.297.9.969. [PubMed] [CrossRef]

 

  1. de Souza R, Bray G, Carey V, Hall K, LeBoff M, Loria C, et al. Effects of 4 weight-loss diets differing in fat, protein, and carbohydrate on fat mass, lean mass, visceral adipose tissue, and hepatic fat: results from the POUNDS LOST trial. Am J Clin Nutr. 2012;95(3):614–25. doi: 10.3945/ajcn.111.026328.[PMC free article] [PubMed] [CrossRef]

 

  1. Frigolet M, Ramos Barragán V, Tamez GM. Low-carbohydrate diets: a matter of love or hate. Ann Nutr Metab. 2011;58(4):320–34. doi: 10.1159/000331994. [PubMed] [CrossRef]

 

  1. Lara-Castro C, Garvey W. Diet, insulin resistance, and obesity: zoning in on data for Atkins dieters living in South Beach. J Clin Endocrinol Metab. 2004;89(9):4197–205. doi: 10.1210/jc.2004-0683. [PubMed] [CrossRef]

 

  1. Westman E, Feinman R, Mavropoulos J, Vernon M, Volek J, Wortman J, et al. Low-carbohydrate nutrition and metabolism. Am J Clin Nutr. 2007;86(2):276–84. [PubMed]

 

  1. Hu T, Mills K, Yao L, Demanelis K, Eloustaz M, Yancy WJ, et al. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol. 2012;176(Suppl 7):S44–54. doi: 10.1093/aje/kws264. [PMC free article] [PubMed] [CrossRef]

 

  1. Mansoor N, Vinknes K, Veierød M, Retterstøl K. Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr. 2016;115(3):466–79. doi: 10.1017/S0007114515004699. [PubMed] [CrossRef]

 

  1. Hashimoto Y, Fukuda T, Oyabu C, Tanaka M, Asano M, Yamazaki M, et al. Impact of low-carbohydrate diet on body composition: meta-analysis of randomized controlled studies. Obes Rev. 2016;17(6):499–509. doi: 10.1111/obr.12405. [PubMed] [CrossRef]

 

  1. Paoli A. Ketogenic diet for obesity: friend or foe? Int J Environ Res Public Health. 2014;11(2):2092–107. doi: 10.3390/ijerph110202092. [PMC free article] [PubMed] [CrossRef]

 

  1. Paoli A, Rubini A, Volek J, Grimaldi K. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr. 2013;67(8):789–96. doi: 10.1038/ejcn.2013.116. [PMC free article] [PubMed] [CrossRef]

 

  1. Hall K, Chen K, Guo J, Lam Y, Leibel R, Mayer L, et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am J Clin Nutr. 2016;104(2):324–33. doi: 10.3945/ajcn.116.133561.[PMC free article] [PubMed] [CrossRef]

 

  1. Clifton P, Condo D, Keogh J. Long term weight maintenance after advice to consume low carbohydrate, higher protein diets–a systematic review and meta analysis. Nutr Metab Cardiovasc Dis. 2014;24(3):224–35. doi: 10.1016/j.numecd.2013.11.006. [PubMed] [CrossRef]

 

  1. Soenen S, Bonomi A, Lemmens S, Scholte J, Thijssen M, van Berkum F, et al. Relatively high-protein or ‘low-carb’ energy-restricted diets for body weight loss and body weight maintenance? Physiol Behav. 2012;107(3):374–80. doi: 10.1016/j.physbeh.2012.08.004. [PubMed] [CrossRef]

 

  1. Leidy H, Clifton P, Astrup A, Wycherley T, Westerterp-Plantenga M, Luscombe-Marsh N, et al. The role of protein in weight loss and maintenance. Am J Clin Nutr. 2015. [Epub ahead of print]. [PubMed]

 

  1. Weigle D, Breen P, Matthys C, Callahan H, Meeuws K, Burden V, et al. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr. 2005;82(1):41–8. [PubMed]

 

  1. Wilson J, Lowery R, Roberts M, Sharp M, Joy J, Shields K, et al. The effects of ketogenic dieting on body composition, strength, power, and hormonal profiles in resistance training males. J Strength Cond Res. 2017. doi: 10.1519/JSC.0000000000001935. [PubMed]

 

  1. Veum V, Laupsa-Borge J, Eng Ø, Rostrup E, Larsen T, Nordrehaug J, et al. Visceral adiposity and metabolic syndrome after very high-fat and low-fat isocaloric diets: a randomized controlled trial. Am J Clin Nutr. 2017;105(1):85–99. doi: 10.3945/ajcn.115.123463. [PubMed] [CrossRef]

 

  1. Stimson R, Johnstone A, Homer N, Wake D, Morton N, Andrew R, et al. Dietary macronutrient content alters cortisol metabolism independently of body weight changes in obese men. J Clin Endocrinol Metab. 2007;92(11):4480–4. doi: 10.1210/jc.2007-0692. [PubMed] [CrossRef]

 

  1. Johnston C, Tjonn S, Swan P, White A, Hutchins H, Sears B. Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets. Am J Clin Nutr. 2006;83(5):1055–61. [PubMed]

 

  1. Hall K, Guo J. Obesity Energetics: Body Weight Regulation and the Effects of Diet Composition. Gastroenterology. Gastroenterology. 2017;152(7):1718-27. [PMC free article][PubMed]

 

  1. Hall K. A review of the carbohydrate-insulin model of obesity. Eur J Clin Nutr. 2017;71(3):323–6. doi: 10.1038/ejcn.2016.260.[PubMed] [CrossRef]

 

  1. Burke L. Re-examining high-fat diets for sports performance: Did we call the ‘nail in the coffin’ too soon? Sports Med. 2015;45(Suppl 1):S33–49. doi: 10.1007/s40279-015-0393-9.[PMC free article] [PubMed] [CrossRef]

 

  1. Helge J. Long-term fat diet adaptation effects on performance, training capacity, and fat utilization. Med Sci Sports Exerc. 2002;34(9):1499–504. doi: 10.1097/00005768-200209000-00016.[PubMed] [CrossRef]

 

  1. Yeo W, Carey A, Burke L, Spriet L, Hawley J. Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab. 2011;36(1):12–22. doi: 10.1139/H10-089. [PubMed] [CrossRef]

 

  1. Urbain P, Strom L, Morawski L, Wehrle A, Deibert P, Bertz H. Impact of a 6-week non-energy-restricted ketogenic diet on physical fitness, body composition and biochemical parameters in healthy adults. Nutr Metab (Lond). 2017;14. [PMC free article][PubMed]

 

  1. Johnstone A, Horgan G, Murison S, Bremner D, Lobley G. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am J Clin Nutr. 2008;87(1):44–55. [PubMed]

 

  1. Zajac A, Poprzecki S, Maszczyk A, Czuba M, Michalczyk M, Zydek G. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients. 2014;6(7):2493–508. doi: 10.3390/nu6072493. [PMC free article][PubMed] [CrossRef]

 

  1. Jabekk P, Moe I, Meen H, Tomten S, Høstmark A. Resistance training in overweight women on a ketogenic diet conserved lean body mass while reducing body fat. Nutr Metab (Lond) 2010;7:17. doi: 10.1186/1743-7075-7-17. [PMC free article] [PubMed] [CrossRef]

 

  1. Wood R, Volek J, Davis S, Dell’Ova C, Fernandez M. Effects of a carbohydrate-restricted diet on emerging plasma markers for cardiovascular disease. Nutr Metab (Lond) 2006;3:19. doi: 10.1186/1743-7075-3-19. [PMC free article] [PubMed] [CrossRef]

 

  1. Sumithran P, Prendergast L, Delbridge E, Purcell K, Shulkes A, Kriketos A, et al. Ketosis and appetite-mediating nutrients and hormones after weight loss. Eur J Clin Nutr. 2013;67(7):759–64. doi: 10.1038/ejcn.2013.90. [PubMed] [CrossRef]

 

  1. Gibson A, Seimon R, Lee C, Ayre J, Franklin J, Markovic T, et al. Do ketogenic diets really suppress appetite? a systematic review and meta-analysis. Obes Rev. 2015;16(1):64–76. doi: 10.1111/obr.12230. [PubMed] [CrossRef]

 

  1. Havemann L, West S, Goedecke J, Macdonald I, St Clair Gibson A, Noakes T, et al. Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance. J Appl Physiol. 2006;100(1):194–202. doi: 10.1152/japplphysiol.00813.2005. [PubMed] [CrossRef]

 

  1. Stellingwerff T, Spriet L, Watt M, Kimber N, Hargreaves M, Hawley J, et al. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am J Physiol Endocrinol Metab. 2006;290(2):E380–8. doi: 10.1152/ajpendo.00268.2005. [PubMed] [CrossRef]

 

  1. Burke L, Ross M, Garvican-Lewis L, Welvaert M, Heikura I, Forbes S, et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. 2016. doi: 10.1113/JP273230. [PMC free article] [PubMed]

 

  1. Paoli A, Grimaldi K, D’Agostino D, Cenci L, Moro T, Bianco A, et al. Ketogenic diet does not affect strength performance in elite artistic gymnasts. J Int Soc Sports Nutr. 2012;9(1):34. doi: 10.1186/1550-2783-9-34. [PMC free article] [PubMed] [CrossRef]

 

  1. Bray G, Smith S, de Jonge L, Xie H, Rood J, Martin C, et al. Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating: a randomized controlled trial. JAMA. 2012;307(1):47–55. doi: 10.1001/jama.2011.1918. [PMC free article] [PubMed] [CrossRef]

 

  1. Layman D, Evans E, Erickson D, Seyler J, Weber J, Bagshaw D, et al. A moderate-protein diet produces sustained weight loss and long-term changes in body composition and blood lipids in obese adults. J Nutr. 2009;139(3):514–21. doi: 10.3945/jn.108.099440. [PubMed] [CrossRef]

 

  1. Layman D, Evans E, Baum J, Seyler J, Erickson D, Boileau R. Dietary protein and exercise have additive effects on body composition during weight loss in adult women. J Nutr. 2005;135(8):1903–10. [PubMed]

 

  1. Pasiakos S, Cao J, Margolis L, Sauter E, Whigham L, McClung J, et al. Effects of high-protein diets on fat-free mass and muscle protein synthesis followingweight loss: a randomized controlled trial. FASEB J. 2013;27(9):3837–47. doi: 10.1096/fj.13-230227.[PubMed] [CrossRef]

 

  1. Longland T, Oikawa S, Mitchell C, Devries M, Phillips S. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial. Am J Clin Nutr. 2016;103(3):738–46. doi: 10.3945/ajcn.115.119339. [PubMed] [CrossRef]

 

  1. Arciero P, Ormsbee M, Gentile C, Nindl B, Brestoff J, Ruby M. Increased protein intake and meal frequency reduces abdominal fat during energy balance and energy deficit. Obesity (Silver Spring) 2013;21(7):1357–66. doi: 10.1002/oby.20296. [PubMed] [CrossRef]

 

  1. Arciero PE RC, Bunsawat K, Gentile C, Ketcham C, Darin C, Renna M, et al. Protein-pacing from food or supplementation improves physical performance in overweight men and women: the PRISE 2 study. Nutrients. 2016;8(5):E288. doi: 10.3390/nu8050288. [PMC free article] [PubMed] [CrossRef]

 

  1. Pesta D, Samuel V. A high-protein diet for reducing body fat: mechanisms and possible caveats. Nutr Metab (Lond) 2014;11(1):53. doi: 10.1186/1743-7075-11-53. [PMC free article][PubMed] [CrossRef]

 

  1. Schwingshackl L, Hoffmann G. Long-term effects of low-fat diets either low or high in protein on cardiovascular and metabolic risk factors: a systematic review and meta-analysis. Nutr J. 2013;12:48. doi: 10.1186/1475-2891-12-48. [PMC free article][PubMed] [CrossRef]

 

  1. Wycherley T, Moran L, Clifton P, Noakes M, Brinkworth G. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;96(6):1281–98. doi: 10.3945/ajcn.112.044321. [PubMed] [CrossRef]

 

  1. Dong J, Zhang Z, Wang P, Qin L. Effects of high-protein diets on body weight, glycaemic control, blood lipids and blood pressure in type 2 diabetes: meta-analysis of randomised controlled trials. Br J Nutr. 2013;10(5):781–9. doi: 10.1017/S0007114513002055.[PubMed] [CrossRef]

 

  1. Santesso N, Akl E, Bianchi M, Mente A, Mustafa R, Heels-Ansdell D, et al. Effects of higher- versus lower-protein diets on health outcomes: a systematic review and meta-analysis. Eur J Clin Nutr. 2012;66(7):780–8. doi: 10.1038/ejcn.2012.37.[PMC free article] [PubMed] [CrossRef]

 

  1. Helms E, Zinn C, Rowlands D, Brown S. A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: a case for higher intakes. Int J Sport Nutr Exerc Metab. 2014;24(2):127–38. doi: 10.1123/ijsnem.2013-0054.[PubMed] [CrossRef]

 

  1. Antonio J, Peacock C, Ellerbroek A, Fromhoff B, Silver T. The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals. J Int Soc Sports Nutr. 2014;11:19. doi: 10.1186/1550-2783-11-19. [PMC free article][PubMed] [CrossRef]

 

  1. Antonio J, Ellerbroek A, Silver T, Orris S, Scheiner M, Gonzalez A, et al. A high protein diet (3.4 g/kg/d) combined with a heavy resistance training program improves body composition in healthy trained men and women–a follow-up investigation. J Int Soc Sports Nutr. 2015;12:39. doi: 10.1186/s12970-015-0100-0.[PMC free article] [PubMed] [CrossRef]

 

  1. Antonio J, Ellerbroek A, Silver T, Vargas L, Peacock C. The effects of a high protein diet on indices of health and body composition–a crossover trial in resistance-trained men. J Int Soc Sports Nutr. 2016;13:3. doi: 10.1186/s12970-016-0114-2.[PMC free article] [PubMed] [CrossRef]

 

  1. Antonio J, Ellerbroek A, Silver T, Vargas L, Tamayo A, Buehn R, et al. A high protein diet has no harmful effects: a one-year crossover study in resistance-trained males. J Nutr Metab. 2016;2016:9104792. doi: 10.1155/2016/9104792.[PMC free article] [PubMed] [CrossRef]

 

  1. Tinsley G, La Bounty P. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr Rev. 2015;73(10):661–74. doi: 10.1093/nutrit/nuv041. [PubMed] [CrossRef]

 

  1. Varady K, Bhutani S, Church E, Klempel M. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. Am J Clin Nutr. 2009;90(5):1138–43. doi: 10.3945/ajcn.2009.28380. [PubMed] [CrossRef]

 

  1. Varady K, Bhutani S, Klempel M, Kroeger C, Trepanowski J, Haus J, et al. Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr J. 2013;12(1):146. doi: 10.1186/1475-2891-12-146.[PMC free article] [PubMed] [CrossRef]

 

  1. Bhutani S, Klempel M, Kroeger C, Trepanowski J, Varady K. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity (Silver Spring) 2013;21(7):1370–9. doi: 10.1002/oby.20353. [PubMed] [CrossRef]

 

  1. Catenacci V, Pan Z, Ostendorf D, Brannon S, Gozansky W, Mattson M, et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity (Silver Spring) 2016;24(9):1874–83. doi: 10.1002/oby.21581. [PMC free article] [PubMed] [CrossRef]

 

  1. Heilbronn L, Smith S, Martin C, Anton S, Ravussin E. Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism. Am J Clin Nutr. 2005;81(1):69–73. [PubMed]

 

  1. de Groot L, van Es A, van Raaij J, Vogt J, Hautvast J. Adaptation of energy metabolism of overweight women to alternating and continuous low energy intake. Am J Clin Nutr. 1989;50(6):1314–23. [PubMed]

 

  1. Hill J, Schlundt D, Sbrocco T, Sharp T, Pope-Cordle J, Stetson B, et al. Evaluation of an alternating-calorie diet with and without exercise in the treatment of obesity. Am J Clin Nutr. 1989;50(2):248–54. [PubMed]

 

  1. Keogh J, Pedersen E, Petersen K, Clifton P. Effects of intermittent compared to continuous energy restriction on short-term weight loss and long-term weight loss maintenance. Clin Obes. 2014;4(3):150–6. doi: 10.1111/cob.12052. [PubMed] [CrossRef]

 

  1. Harvie M, Pegington M, Mattson M, Frystyk J, Dillon B, Evans G, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes (Lond) 2011;35(5):714–27. doi: 10.1038/ijo.2010.171. [PMC free article][PubMed] [CrossRef]

 

  1. Harvie M, Wright C, Pegington M, McMullan D, Mitchell E, et al. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br J Nutr. 2013;110(8):1534–47. doi: 10.1017/S0007114513000792. [PMC free article] [PubMed] [CrossRef]

 

  1. Attarzadeh Hosseini S, Sardar M, Hejazi K, Farahati S. The effect of ramadan fasting and physical activity on body composition, serum osmolarity levels and some parameters of electrolytes in females. Int J Endocrinol Metab. 2013;11(2):88–94. doi: 10.5812/ijem.9602. [PMC free article] [PubMed] [CrossRef]

 

  1. Norouzy A, Salehi M, Philippou E, Arabi H, Shiva F, Mehrnoosh S, Mohajeri SMR, Reza Mohajeri SA, Motaghedi Larijani A, Nematy M. Effect of fasting in Ramadan on body composition and nutritional intake: a prospective study. J Hum Nutr Diet. 2013;26(Suppl. 1):97–104. [PubMed]

 

  1. Tinsley G, Forsse J, Butler N, Paoli A, Bane A, La Bounty P, et al. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur J Sport Sci. 2017;17(2):200–7. doi: 10.1080/17461391.2016.1223173.[PubMed] [CrossRef]

 

  1. Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli Q, Battaglia G, et al. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med. 2016;14(1):290. doi: 10.1186/s12967-016-1044-0. [PMC free article] [PubMed] [CrossRef]

 

  1. Seimon R, Roekenes J, Zibellini J, Zhu B, Gibson A, Hills A, et al. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol. 2015;418(Pt 2):153–72. doi: 10.1016/j.mce.2015.09.014. [PubMed] [CrossRef]

 

  1. Jéquier E. Pathways to obesity. Int J Obes Relat Metab Disord. 2002;26(Suppl 2):S12–7. doi: 10.1038/sj.ijo.0802123. [PubMed] [CrossRef]

 

  1. Halton T, Hu F. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr. 2004;23(5):373–85. doi: 10.1080/07315724.2004.10719381.[PubMed] [CrossRef]

 

  1. Seaton T, Welle S, Warenko M, Campbell R. Thermic effect of medium-chain and long-chain triglycerides in man. Am J Clin Nutr. 1986;44(5):630–4. [PubMed]

 

  1. Acheson K, Blondel-Lubrano A, Oguey-Araymon S, Beaumont M, Emady-Azar S, Ammon-Zufferey C, et al. Protein choices targeting thermogenesis and metabolism. Am J Clin Nutr. 2011;93(3):525–34. doi: 10.3945/ajcn.110.005850. [PubMed] [CrossRef]

 

  1. Hall K, Heymsfield S, Kemnitz J, Klein S, Schoeller D, Speakman J. Energy balance and its components: implications for body weight regulation. Am J Clin Nutr. 2012;95(4):989–94. doi: 10.3945/ajcn.112.036350. [PMC free article] [PubMed] [CrossRef]

 

  1. Westerterp K. Diet induced thermogenesis. Nutr Metab (Lond) 2004;1(1):5. doi: 10.1186/1743-7075-1-5. [PMC free article][PubMed] [CrossRef]

 

  1. von Loeffelholzn C. The Role of Non-exercise Activity Thermogenesis in Human Obesity. Updated 2014 Jun 5. In: De Groot LJ, Chrousos G, Dungan K, et al, editors Endotext . South Dartmouth (MA): MDText.com, Inc. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279077/.

 

  1. Pinheiro Volp A, Esteves de Oliveira F, Duarte Moreira Alves R, Esteves E, Bressan J. Energy expenditure: components and evaluation methods. Nutr Hosp. 2011;26(3):430–40. [PubMed]

 

  1. Levine J. Nonexercise activity thermogenesis (NEAT): environment and biology. Am J Physiol Endocrinol Metab. 2004;286(5):E675–85. doi: 10.1152/ajpendo.00562.2003.[PubMed] [CrossRef]

 

  1. Levine J. Nonexercise activity thermogenesis–liberating the life-force. J Intern Med. 2007;262(3):273–87. doi: 10.1111/j.1365-2796.2007.01842.x. [PubMed] [CrossRef]

 

  1. Müller MJ B-WA, Heymsfield SB. Is there evidence for a set point that regulates human body weight? F1000 Med Rep. 2010;2:59. doi: 10.3410/M2-59. [PMC free article] [PubMed] [CrossRef]

 

  1. Oʼrourke R. Metabolic thrift and the genetic basis of human obesity. Ann Surg. 2014;259(4):642–8. doi: 10.1097/SLA.0000000000000361. [PMC free article] [PubMed] [CrossRef]

 

  1. Barr S, Wright J. Postprandial energy expenditure in whole-food and processed-food meals: implications for daily energy expenditure. Food Nutr Res. 2010;54. doi: 10.3402/fnr.v54i0.5144. [PMC free article] [PubMed]

 

  1. Heymsfield S, van Mierlo C, van der Knaap H, Heo M, Frier H. Weight management using a meal replacement strategy: meta and pooling analysis from six studies. Int J Obes Relat Metab Disord. 2003;27(5):537–49. doi: 10.1038/sj.ijo.0802258. [PubMed] [CrossRef]

 

  1. Davis L, Coleman C, Kiel J, Rampolla J, Hutchisen T, Ford L, et al. Efficacy of a meal replacement diet plan compared to a food-based diet plan after a period of weight loss and weight maintenance: a randomized controlled trial. Nutr J. 2010;9:11. doi: 10.1186/1475-2891-9-11. [PMC free article] [PubMed] [CrossRef]

 

  1. McClave S, Snider H. Dissecting the energy needs of the body. Curr Opin Clin Nutr Metab Care. 2001;4(2):143–7. doi: 10.1097/00075197-200103000-00011. [PubMed] [CrossRef]

 

  1. Müller M, Wang Z, Heymsfield S, Schautz B, Bosy-Westphal A. Advances in the understanding of specific metabolic rates of major organs and tissues in humans. Curr Opin Clin Nutr Metab Care. 2013;16(5):501–8. [PubMed]

 

  1. Boguszewski C, Paz-Filho G, Velloso L. Neuroendocrine body weight regulation: integration between fat tissue, gastrointestinal tract, and the brain. Endokrynol Pol. 2010;61(2):194–206. [PubMed]

 

  1. Rosenbaum M, Leibel R. Adaptive thermogenesis in humans. Int J Obes (Lond) 2010;34(Suppl 1):S47–55. doi: 10.1038/ijo.2010.184. [PMC free article] [PubMed] [CrossRef]

 

  1. Leibel R, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Engl J Med. 1995;332(10):621–8. doi: 10.1056/NEJM199503093321001.[PubMed] [CrossRef]

 

  1. Rosenbaum M, Leibel R. Models of energy homeostasis in response to maintenance of reduced body weight. Obesity (Silver Spring) 2016;24(8):1620–9. doi: 10.1002/oby.21559.[PMC free article] [PubMed] [CrossRef]

 

  1. Camps S, Verhoef S, Westerterp K. Weight loss, weight maintenance, and adaptive thermogenesis. Am J Cliln Nutr. 2013;97(5):990–4. doi: 10.3945/ajcn.112.050310. [PubMed] [CrossRef]

 

  1. Lichtman S, Pisarska K, Berman E, Pestone M, Dowling H, Offenbacher E, et al. Discrepancy between self-reported and actual caloric intake and exercise in obese subjects. N Engl J Med. 1992;327(27):1893–8. doi: 10.1056/NEJM199212313272701.[PubMed] [CrossRef]

 

  1. Joosen A, Westerterp K. Energy expenditure during overfeeding. Nutr Metab (Lond) 2006;3:25. doi: 10.1186/1743-7075-3-25. [PMC free article] [PubMed] [CrossRef]

 

  1. Levine J. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science. 1999;283(5399):212–4. doi: 10.1126/science.283.5399.212. [PubMed] [CrossRef]

 

  1. Rosqvist F, Iggman D, Kullberg J, Cedernaes J, Johansson H, Larsson A, et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes. 2014;63(7):2356–68. doi: 10.2337/db13-1622.[PubMed] [CrossRef]

 

  1. Garthe I, Raastad T, Refsnes P, Sundgot-Borgen J. Effect of nutritional intervention on body composition and performance in elite athletes. Eur J Sport Sci. 2013;13(3):295–303. doi: 10.1080/17461391.2011.643923. [PubMed] [CrossRef]

 

  1. Rozenek R, Ward P, Long S, Garhammer J. Effects of high-calorie supplements on body composition and muscular strength following resistance training. J Sports Med Phys Fitness. 2002;42(3):340–7. [PubMed]

 

  1. Demling R, DeSanti L. Effect of a hypocaloric diet, increased protein intake and resistance training on lean mass gains and fat mass loss in overweight police officers. Ann Nutr Metab. 2000;44(1):21–9. doi: 10.1159/000012817. [PubMed] [CrossRef]

 

  1. Garthe I, Raastad T, Refsnes P, Koivisto A, Sundgot-Borgen J. Effect of two different weight-loss rates on body composition and strength and power-related performance in elite athletes. Int J Sport Nutr Exerc Metab. 2011;21(2):97–104. doi: 10.1123/ijsnem.21.2.97. [PubMed] [CrossRef]

 

  1. Pasiakos S, Vislocky L, Carbone J, Altieri N, Konopelski K, Freake H, et al. Acute energy deprivation affects skeletal muscle protein synthesis and associated intracellular signaling proteins in physically active adults. J Nutr. 2010;140(4):745–51. doi: 10.3945/jn.109.118372. [PubMed] [CrossRef]

 

  1. Helms E, Aragon A, Fitschen P. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr. 2014;11:20. doi: 10.1186/1550-2783-11-20. [PMC free article] [PubMed] [CrossRef]

 

  1. Campbell B, Kreider R, Ziegenfuss T, La Bounty P, Roberts M, Burke D, et al. International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2007;4:8. doi: 10.1186/1550-2783-4-8. [PMC free article] [PubMed] [CrossRef]

 

  1. Bandegan A, Courtney-Martin G, Rafii M, Pencharz P, Lemon P. Indicator amino acid–derived estimate of dietary protein requirement for male bodybuilders on a non training day is several-fold greater than the current recommended dietary allowance. J Nutr. 2017;147(5):850-7. [PubMed]

 

  1. Cermak NR, de PT, Groot LC S, WH van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–64. doi: 10.3945/ajcn.112.037556.[PubMed] [CrossRef]

 

  1. Phillips S, Van Loon L. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 2011;29(Suppl 1):S29–38. doi: 10.1080/02640414.2011.619204. [PubMed] [CrossRef]

 

  1. Churchward-Venne T, Murphy C, Longland T, Phillips S. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans. Amino Acids. 2013;45(2):231–40. doi: 10.1007/s00726-013-1506-0. [PubMed] [CrossRef]

 

  1. Montesi L, El Ghoch M, Brodosi L, Calugi S, Marchesini G, Dalle GR. Long-term weight loss maintenance for obesity: a multidisciplinary approach. Diab Metab Syndr Obes. 2016;26(9):37–46. [PMC free article] [PubMed]

 

 

 

 

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください