国際スポーツ栄養学会ポジションスタンド:栄養素タイミング(炭水化物+たんぱく質編)

 国際スポーツ栄養学会ポジションスタンド:栄養タイミング(炭水化物編)に引き続いて,炭水化物+たんぱく質編を翻訳する.

炭水化物+たんぱく質

持久性トレーニング

 炭水化物とたんぱく質の組み合わせは持久性アスリートおよび筋力アスリートに採用される伝統的な戦略であり,運動パフォーマンスを増加させ,グリコーゲン補給を促進し,筋損傷を最小限に抑え,正の窒素バランスを促進する.少数の研究で持久性運動前に炭水化物・たんぱく質摂取のパフォーマンスおよび代謝アウトカムを調べたものはあるが,いつ栄養素が投与されたかを変化させた影響を,直接に調査したものはほとんど存在しない.Ivy らがトレーニングを受けたサイクリスト募集し,45 – 75 % VO2max の強度で三時間のサイクリング運動を完了後に 85 % VO2max で疲労困憊まで運動させた [77]. クロスオーバー様式で,被検者は 7.75 % 炭水化物溶液または 7.75 % 炭水化物+ 1.94 % たんぱく質溶液を摂取した.炭水化物にたんぱく質を加えると,持久力は有意に改善した.同様の手法で Saunders らは被検者を 24 時間以内に二種類の異なる状況 (75 – 85 % VO2max) で疲労を促した.つまり,疲労困憊直後に単回投与 (10 mL/kg) した後に,一方には炭水化物溶液単独を,他方には炭水化物およびたんぱく質の混合溶液を運動中(1.8 mL/kg を 15 分毎)に投与するものである [78]. 炭水化物とたんぱく質の混合溶液では筋損傷の減少と同様,有意なパフォーマンスの改善を認めた.同じ研究チームの報告によると,栄養ジェルを用いて反復運動中に炭水化物 (0.146 g/kg) たんぱく質 (0.0365 g/kg) の混合物を摂取するとサイクリングのパフォーマンスが有意に改善するという [79]. これらの研究のいずれもタイミングを直接比較した調査ではなかったが,それらは全て,炭水化物+たんぱく質の混合物を運動前に摂取することで,持久性パフォーマンスに好影響をおよぼす可能性があることを示唆している.さらに,たんぱく質の(炭水化物への)付加は,短時間しか回復時間を取れない場合や,最適量を下回る量の炭水化物しか分配されない場合,および筋損傷の症状を軽減するのに役立つ場合に,グリコーゲン補給速度を高める可能性が示唆されている [80]. 注目すべきことだが,これらの量の炭水化物とたんぱく質を運動前に摂取することで運動パフォーマンスを妨げる可能性のあることを示した報告はない.同様に,Rustad らの報告によると,まずサイクリング運動で疲労困憊させて 2 時間以内に炭水化物 (0.8 g/kg/h) にたんぱく質 (0.4 g/kg/h) を付加すると,炭水化物単独を摂取した場合と比較して,翌朝の有意なサイクリングパフォーマンスの改善を認め,ゆえにこれは回復の改善を示唆するという [81]. 

 貯蔵された燃料を使い果たし,筋組織に重大な損傷を与える可能性のある運動の完遂からの回復をサポートするために,運動後の栄養タイミング戦略は非常に興味深いものである.Ivy らはサイクリストに要請して 2.5 時間のサイクリング (65 – 75 % VO2max) を完遂させ,その後に炭水化物とたんぱく質の混合物(80 g の炭水化物と 28 g のたんぱく質,6 g の脂質)または二種類の異なる投与(高炭水化物群として 108 g の炭水化物と 6 g の脂質,低炭水化物群として 80 g 炭水化物と 6 g の脂質)を運動セッション直後と 2 時間後に行った [82]. タイミングは特に調査されていないが,炭水化物とたんぱく質の混合物は,研究チームが調査した 4 時間の調査時間の中で,より大きなグリコーゲン回復に至った.これらの知見は,この研究チームによる以前の知見をなぞったものであり,たんぱく質の付加がグリコーゲン回復の初期段階を有利に促進したという結論に至った [83]. Berardi らが後に同様の二つの研究を公表しているが,炭水化物とたんぱく質の混合物を準備しておくことで,ワークアウト完了直後およびそれに引き続く持久性運動の前に摂取すると,筋グリコーゲンのより大きな回復を促進したという [84, 85]. 

 このトピックについてのさらなる研究が完了するにつれ,たんぱく質を付加することの潜在的な利益は疑問視されてきた.例えば,Jentjens らは,炭水化物 (1.2 g/kg/h) とたんぱく質 (0.4 g/kg/h) 混合物では,炭水化物単独と比較して,3 時間の回復時間では筋グリコーゲン貯蔵の改善を示せなかった [63]. Howarth らは後にたんぱく質の付加に関して同様の結論に達し,これらの知見を拡張して,高用量の炭水化物 (1.6 g/kg/h) がさらなるグリコーゲン再合成を促進しないことを報告している [86]. したがって,炭水化物摂取量が 1.2 g/kg/h 未満である時に,たんぱく質の付加がグリコーゲン回復を増強すると考えられる.

筋力トレーニング

 筋力トレーニング前に炭水化物とたんぱく質との摂取の効果を調査した研究はごく少数しか利用できない.例えば,Kraemer らは被検者に 7 日間,炭水化物とたんぱく質と脂質の混合物または,それと等エネルギーのマルトデキストリンのプラセボを摂取させて,2 日間の連続した筋力トレーニングを実施した [87]. 両群ともにサプリメントは運動開始の 30 分前に摂取したが,多栄養サプリメント群の方が垂直跳躍力および 80 % 1 RM でのレップス回数の有意な改善を認めた.同様の結果が Baty らにより報告され,そこでは 34 名の男性が激しい筋力トレーニング (90 % 1 RM 8 rep 3 sets) を受け,炭水化物(6.2 % 炭水化物)または炭水化物・たんぱく質(6.2 % 炭水化物 + 1.5 % たんぱく質)溶液のいずれかを,運動の前,運動中および運動後に摂取した [88]. パフォーマンスに影響はなかったが,炭水化物・たんぱく質混合物を摂取した時に,インスリン濃度の有意な上昇とコルチゾール濃度の有意な低下を認めた.さらに,炭水化物・たんぱく質混合物を摂取した時に筋損傷マーカー(例えばミオグロビンおよびクレアチンキナーゼ)が最初の 24 時間の回復期を通じて減少していた.これらの二つの研究では,筋力トレーニングセッション前のある時点で炭水化物・たんぱく質混合物を提供したが,運動前の炭水化物・たんぱく質の補給が運動パフォーマンス改善や適応に寄与したのかどうかを調べる目的では,これらの研究はデザインされていない.

 Tipton らは炭水化物・必須アミノ酸のタイミングが筋蛋白合成率を変化させたか否かを直接調べるための最初の研究の一つを完了した [89]. この調査では,被検者は単回の下半身筋力トレーニングを完了し,その間同量の炭水化物(スクロース 35 g)と必須アミノ酸 6 g を運動直前か運動直後かのいずれかに摂取した.運動直前の栄養素摂取は,筋力トレーニング直後に炭水化物と必須アミノ酸混合物を摂取した場合よりも,筋蛋白合成率を有意に増加させた.しかし数年後,Fujita らが研究結果を再現しようと試みたが,運動前摂取と運動後摂取とでは筋蛋白合成率は同等だと結論した [90]. 多くの人は運動前の時間を省略するために Fujita の論文を用いるが,筋蛋白合成率の有意な増加は,筋力トレーニングの前後に栄養素を摂取した時に起きたことを強調すべきであり,エネルギー投与なしの対照群と比較したもので,これは分配のタイミングではなく栄養素の分配自体に,より大きな優先順位があることを示唆している.White らは研究を行い,炭水化物とたんぱく質の時間を区切った摂取が筋力産生および筋損傷マーカーに影響するかどうか,具体的に調査した [91]. この研究では 27 名の成人被検者が次のいずれか,つまり非カロリー甘味料または炭水化物 (75 g) とたんぱく質 (23 g) 混合物かを,損傷レベルの筋力トレーニングの 15 分前か 15 分後に摂取した.その結果分かったのは,筋力産生および血中筋損傷マーカーに影響を与えたのは,栄養素それ自体でもそのタイミングでもなかったということである.この結果から,炭水化物とたんぱく質の混合物を前後に摂取すると筋蛋白合成率が急速に増加する可能性があるが,筋力産生の変化や筋損傷は,炭水化物とたんぱく質混合物のタイミングには影響されない可能性があることを示唆している.

 筋力トレーニングを通じて炭水化物とたんぱく質または必須アミノ酸の混合物を摂取することの急性の効果が研究されてきた [92, 93, 94, 95, 96]. しかし,他の期間同様,タイミングの問題を真に調査した研究は存在しない.この点に関して,Bird らにより公表された一連の研究は,急性パフォーマンス,ホルモン反応および筋損傷に関する急性期蛋白質の血中濃度に関して,炭水化物または炭水化物と必須アミノ酸の消費の影響を調査したものである [93, 94, 95, 96]. 最初の研究では 32 名の被検者が 60 分間の筋力トレーニングを通じて定期的に 6 % 炭水化物溶液,6 % 炭水化物と 6 g 必須アミノ酸溶液または非栄養プラセボのいずれかを摂取するよう無作為割付された.この研究からの知見の示唆するところは,6 % 炭水化物溶液か 6 % 炭水化物と 6 g 必須アミノ酸溶液のいずれかが摂取された時に,非エネルギープラセボと比較して血中コルチゾル濃度は減少するということである [94]. この調査後の報告の公表するところでは,炭水化物必須アミノ酸混合物を摂取すると尿中筋蛋白分解マーカーは 27 % 減少したが,プラセボ群では 56 % 増加した [95]. 

 Bird らによる後の研究では「三相」アプローチを用いた.炭水化物とアミノ酸混合物を単回の筋力トレーニングの前,中,後に分配するものである [93]. クロスオーバー試験デザインを用いて,被検者は同量の非栄養性甘味料で風味づけした水からなるプラセボも同時に摂取した.彼らの報告によると,栄養素の分配は(全くなしと比較して)完遂した運動量の有意な増加と筋損傷を示す血清蛋白質の減少を認めたという.これらの方針に従い,Beelen らも次のような急性試験デザインを完遂させた.つまり,研究の被検者には筋力トレーニングの 2 時間前とセッション中に 15 分間隔で,炭水化物と体重あたり 0.15 g/kg の溶解したカゼインたんぱく質を摂取させた状態とすることを求めた [92]. プラセボと比較して,炭水化物とたんぱく質の混合物は蛋白質分解率を有意に低下させ,筋蛋白合成率分画を 49 ± 22 % 増加させ,その結果蛋白質バランスは 5 倍増加した.

 筋力トレーニングにおける炭水化物とたんぱく質の摂取の慢性期の研究も行われている.Bird らは 6 % 炭水化物と 6 g 必須アミノ酸溶液を摂取させて 12 週間にわたって(週に 2 回)筋力トレーニングを行い,影響を調査した [96]. 尿中 3-メチルヒスチジン濃度は炭水化物・必須アミノ酸混合物摂取群で 26 % 減少しており,対照群で 52 % 増加したのと比較して有意差があった.また,I 型,IIa 型および IIb 型筋繊維の断面積は,炭水化物 (6 %) のみまたは必須アミノ酸 (6g) のいずれか単独を有する溶液を摂取した場合の変化と比較して増加していた.これらの知見は有望であるが,他の研究ではより高用量の必須アミノ酸(最大 12 g)が筋蛋白合成を最大限刺激する可能性を示唆しており,該当研究は提供された必須アミノ酸の投与量により制限される.このように,この分野における将来の研究は,筋力トレーニング中に消費される異なる用量の必須アミノ酸や,炭水化物溶液と様々な用量のインタクトプロテイン混合物が,パフォーマンスと筋力トレーニングへの適応にさらに影響する可能性があるか,確認すべきである.この点で,十分なたんぱく質が供給されているなら,炭水化物を追加しても追加の利益をもたらさない可能性がある.この例として,Hulmi らの示したところでは,マルトデキストリン炭水化物 (34.5 g) と濃縮ホエイプロテイン (37.5 g) 混合物を 12 週間の筋力トレーニングプロトコルでワークアウト直後に摂取させたが,プロテインサプリメント単独と比較しても,筋力トレーニング適応には何の利益ももたらさなかったという [97]. Cribb と Hayes は無作為化試験を行い,10 週間の筋力トレーニングプログラム中,男性被検者に同量の炭水化物とたんぱく質とクレアチンを,筋力トレーニングの直前と直後か,あるいは朝夕に摂取させた [16]. 強度,筋肥大および体組成の変化を評価したが,サプリメントを直前直後に摂取した場合に,朝夕にそれらを摂取したのと対照的に,除脂肪量,1 RM 強度,II 型筋繊維断面積およびより高濃度の筋クレアチンおよびグリコーゲン濃度の有意な増加を認めた.Hulmi らの結果と一見異なるように見えるが,これらの結果は,炭水化物・たんぱく質・クレアチン混合物の一時的な摂取が筋力トレーニング適応に対して好ましい結果をもたらした可能性があり,炭水化物・たんぱく質混合物が同量のたんぱく質単独摂取に比べて良いとは必ずしも言えないことを示唆している.さらに,Cribb と Hayes もクレアチンを提供したが,他の研究ではクレアチンを提供しなかった.これは筋力トレーニング中に見られる筋肉の適応を増強するための複数の調査シナリオで明らかになっている [98, 99, 100]. 

 筋力トレーニング中の炭水化物とたんぱく質混合物はインスリン反応を経由して筋発達を増強することが示唆されている.特に,インスリンは筋肉の抗異化反応を促進し,それにより蛋白質収支を同化作用に有利にシフトさせる [101]. しかし,蛋白質分解の平衡を減少させるインスリン介在効果は約 15 – 30 µIU/mL の範囲内であり,この濃度は 45 g のホエイプロテイン単独を一気に摂取することで達成される [102, 103] [104]. これの示唆するところは,筋発達の観点からは,適切なたんぱく質を摂取すれば,トレーニング後の炭水化物補給はほとんど影響しないということである.この目的に向かい,Staples らは,炭水化物(マルトデキストリン 50 g)とたんぱく質(ホエイプロテイン 25 g)混合物の,単回の下半身筋力トレーニング完了直後の筋蛋白合成率への影響を比較した [105]. 著者らの報告によると,炭水化物とたんぱく質混合物は,たんぱく質単独と比較しても,筋蛋白合成率の増加をさらに刺激することはなかったという.さらに Rasmussen らの見出したところでは,一連の筋力トレーニングを完了してから 1 時間後または 3 時間後に 35 g スクロースと 6 g 必須アミノ酸を摂取した場合に,アミノ酸収支に差がなかったという [106]. 

 要約すると,持久性運動と筋力トレーニングの両方において,炭水化物とたんぱく質を時間的に近接してまたはその間に摂取することは有効な戦略として機能し,定期的なトレーニングからの適応と同様に,その後の運動パフォーマンスに有利な影響を与える.この目的のために,減少した筋グリコーゲンの回復の改善と同様に持久性パフォーマンスの向上は一貫して報告されており,それは炭水化物とたんぱく質混合物が運動周辺で消費された時であり,特に,少量の炭水化物しか摂取されない時である.しかしながら,最適量の炭水化物が分配されると(たんぱく質の供給の有無とは無関係に),筋グリコーゲン減少の回復と同様,持久性運動や筋力トレーニングのパフォーマンスへの追加の利益は,たんぱく質を付加しても,ほとんどあるいは全く,影響を与えないようである.グリコーゲン回復に関する研究と同様に,筋力トレーニングおよび筋力トレーニングからの適応で見られる最適化を含めた研究もまた,日中に消費されるたんぱく質の総量に高い優先順位をつけることを示している.それゆえ,たんぱく質の総需要が満たされるなら,炭水化物を付加することの重要性(そしてなおさら時間を区切る様式)は限定的となる可能性がある.重要な論点はしかし,総エネルギー需要も満たされているかどうかである.特に,高用量のトレーニングを行っているアスリートや,低体重同様にるい痩の目立つアスリートにおいてはさらにそうである.このような状況では,炭水化物をたんぱく質に追加して補給することは,アスリートが適切な適切なエネルギーを摂取する助けになる可能性があり,適応が起こる範囲に影響を与え続ける可能性がある.筋力トレーニングを種目特異的なトレーニングに組み合わせているアスリートの場合には,その後の運動と適応のための回復を最適化するために,各セッションのすぐ近くに炭水化物とたんぱく質を用意しておくことを推奨する.

たんぱく質

持久性トレーニング

筋力トレーニング

食事のタイミングと分配-時刻に配慮する

食事頻度

たんぱく質摂取のタイミングと分配

睡眠前のたんぱく質摂取

結論

実際への応用

参考文献

  1. Kerksick C, Harvey T, Stout J, Campbell B, Wilborn C, Kreider R, Kalman D, Ziegenfuss T, Lopez H, Landis J, et al. International Society Of Sports Nutrition Position Stand: Nutrient Timing. J Int Soc Sports Nutr. 2008;5:17. doi: 10.1186/1550-2783-5-17.[PMC free article] [PubMed] [CrossRef]
  2. Sherman WM, Costill DI, Fink WJ, Miller JM. Effect Of Exercise-Diet Manipulation On Muscle Glycogen And Its Subsequent Utilization During Performance. Int J Sports Med. 1981;2(2):114–118. doi: 10.1055/s-2008-1034594. [PubMed] [CrossRef]
  3. Karlsson J, Saltin B. Diet, Muscle Glycogen, And Endurance Performance. J Appl Physiol. 1971;31(2):203–206. [PubMed]
  4. Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF. Muscle Glycogen Synthesis After Exercise: Effect Of Time Of Carbohydrate Ingestion. J Appl Physiol. 1988;64(4):1480–1485.[PubMed]
  5. Cermak NM, Res PT, De Groot LC, Saris WH, Van Loon LJ. Protein Supplementation Augments The Adaptive Response Of Skeletal Muscle To Resistance-Type Exercise Training: A Meta-Analysis. Am J Clin Nutr. 2012;96(6):1454–1464. doi: 10.3945/ajcn.112.037556. [PubMed] [CrossRef]
  6. Marquet LA, Hausswirth C, Molle O, Hawley JA, Burke LM, Tiollier E, Brisswalter J. Periodization Of Carbohydrate Intake: Short-Term Effect On Performance. Nutrients. 2016;8(12):E755. doi: 10.3390/nu8120755. [PMC free article] [PubMed] [CrossRef]
  7. Barry DW, Hansen KC, Van Pelt RE, Witten M, Wolfe P, Kohrt WM. Acute Calcium Ingestion Attenuates Exercise-Induced Disruption Of Calcium Homeostasis. Med Sci Sports Exerc. 2011;43(4):617–623. doi: 10.1249/MSS.0b013e3181f79fa8.[PMC free article] [PubMed] [CrossRef]
  8. Haakonssen EC, Ross ML, Knight EJ, Cato LE, Nana A, Wluka AE, Cicuttini FM, Wang BH, Jenkins DG, Burke LM. The Effects Of A Calcium-Rich Pre-Exercise Meal On Biomarkers Of Calcium Homeostasis In Competitive Female Cyclists: A Randomised Crossover Trial. PLoS One. 2015;10(5):E0123302. doi: 10.1371/journal.pone.0123302. [PMC free article] [PubMed] [CrossRef]
  9. Shea KL, Barry DW, Sherk VD, Hansen KC, Wolfe P, Kohrt WM. Calcium Supplementation And Pth Response To Vigorous Walking In Postmenopausal Women. Med Sci Sports Exerc. 2014;46(10):2007–2013. doi: 10.1249/MSS.0000000000000320.[PMC free article] [PubMed] [CrossRef]
  10. Sherk VD, Barry DW, Villalon KL, Hansen KC, Wolfe P, Kohrt WM. Timing Of Calcium Supplementation Relative To Exercise Alters The Calcium Homeostatic Response To Vigorous Exercise.San Francisco: Endocrine’s Society Annual Meeting; 2013.
  11. Fujii T, Matsuo T, Okamura K. The Effects Of Resistance Exercise And Post-Exercise Meal Timing On The Iron Status In Iron-Deficient Rats. Biol Trace Elem Res. 2012;147(1-3):200–205. doi: 10.1007/s12011-011-9285-5. [PubMed] [CrossRef]
  12. Matsuo T, Kang HS, Suzuki H, Suzuki M. Voluntary Resistance Exercise Improves Blood Hemoglobin Concentration In Severely Iron-Deficient Rats. J Nutr Sci Vitaminol. 2002;48(2):161–164. doi: 10.3177/jnsv.48.161. [PubMed] [CrossRef]
  13. Ryan EJ, Kim CH, Fickes EJ, Williamson M, Muller MD, Barkley JE, Gunstad J, Glickman EL. Caffeine Gum And Cycling Performance: A Timing Study. J Strength Cond Res. 2013;27(1):259–264. doi: 10.1519/JSC.0b013e3182541d03.[PubMed] [CrossRef]
  14. Antonio J, Ciccone V. The Effects Of Pre Versus Post Workout Supplementation Of Creatine Monohydrate On Body Composition And Strength. J Int Soc Sports Nutr. 2013;10(1):36. doi: 10.1186/1550-2783-10-36. [PMC free article] [PubMed] [CrossRef]
  15. Candow DG, Chilibeck PD, Facci M, Abeysekara S, Zello GA. Protein Supplementation Before And After Resistance Training In Older Men. Eur J Appl Physiol. 2006;97(5):548–556. doi: 10.1007/s00421-006-0223-8. [PubMed] [CrossRef]
  16. Cribb PJ, Hayes A. Effects Of Supplement Timing And Resistance Exercise On Skeletal Muscle Hypertrophy. Med Sci Sports Exerc. 2006;38(11):1918–1925. doi: 10.1249/01.mss.0000233790.08788.3e. [PubMed] [CrossRef]
  17. Siegler JC, Marshall PW, Bray J, Towlson C. Sodium Bicarbonate Supplementation And Ingestion Timing: Does It Matter? J Strength Cond Res. 2012;26(7):1953–1958. doi: 10.1519/JSC.0b013e3182392960. [PubMed] [CrossRef]
  18. Coyle EF, Coggan AR, Hemmert MK, Ivy JL. Muscle Glycogen Utilization During Prolonged Strenuous Exercise When Fed Carbohydrate. J Appl Physiol. 1986;61(1):165–172. [PubMed]
  19. Coyle EF, Coggan AR, Hemmert MK, Lowe RC, Walters TJ. Substrate Usage During Prolonged Exercise Following A Preexercise Meal. J Appl Physiol. 1985;59(2):429–433. [PubMed]
  20. Tarnopolsky MA, Gibala M, Jeukendrup AE, Phillips SM. Nutritional Needs Of Elite Endurance Athletes. Part I: Carbohydrate And Fluid Requirements. Eur J Sport Sci. 2005;5(1):3–14. doi: 10.1080/17461390500076741. [CrossRef]
  21. Dennis SC, Noakes TD, Hawley JA. Nutritional Strategies To Minimize Fatigue During Prolonged Exercise: Fluid, Electrolyte And Energy Replacement. J Sports Sci. 1997;15(3):305–313. doi: 10.1080/026404197367317. [PubMed] [CrossRef]
  22. Robergs RA, Pearson DR, Costill DL, Fink WJ, Pascoe DD, Benedict MA, Lambert CP, Zachweija JJ. Muscle Glycogenolysis During Differing Intensities Of Weight-Resistance Exercise. J Appl Physiol. 1991;70(4):1700–1706. [PubMed]
  23. Gleeson M, Nieman DC, Pedersen BK. Exercise, Nutrition And Immune Function. J Sports Sci. 2004;22(1):115–125. doi: 10.1080/0264041031000140590. [PubMed] [CrossRef]
  24. Rodriguez NR, Di Marco NM, Langley S. American College Of Sports Medicine Position Stand. Nutrition And Athletic Performance. Med Sci Sports Exerc. 2009;41(3):709–731. doi: 10.1249/MSS.0b013e31890eb86. [PubMed] [CrossRef]
  25. Howarth KR, Moreau NA, Phillips SM, Gibala MJ. Coingestion Of Protein With Carbohydrate During Recovery From Endurance Exercise Stimulates Skeletal Muscle Protein Synthesis In Humans. J Appl Physiol. 2009;106(4):1394–1402. doi: 10.1152/japplphysiol.90333.2008. [PubMed] [CrossRef]
  26. Van Hall G, Shirreffs SM, Calbet JA. Muscle Glycogen Resynthesis During Recovery From Cycle Exercise: No Effect Of Additional Protein Ingestion. Journal Of Applied Physiology (Bethesda, Md : 1985) 2000;88(5):1631–1636. [PubMed]
  27. Van Loon L, Saris WH, Kruijshoop M. Maximizing Postexercise Muscle Glycogen Synthesis: Carbohydrate Supplementation And The Application Of Amino Acid Or Protein Hydrolysate Mixtures. Am J Clin Nutr. 2000;72:106–111.[PubMed]
  28. Riddell MC, Partington SL, Stupka N, Armstrong D, Rennie C, Tarnopolsky MA. Substrate Utilization During Exercise Performed With And Without Glucose Ingestion In Female And Male Endurance Trained Athletes. Int J Sport Nutr Exerc Metab. 2003;13(4):407–421. doi: 10.1123/ijsnem.13.4.407. [PubMed] [CrossRef]
  29. Devries MC, Hamadeh MJ, Phillips SM, Tarnopolsky MA. Menstrual Cycle Phase And Sex Influence Muscle Glycogen Utilization And Glucose Turnover During Moderate-Intensity Endurance Exercise. Am J Phys Regul Integr Comp Phys. 2006;291(4):R1120–R1128. [PubMed]
  30. Carter SL, Rennie C, Tarnopolsky MA. Substrate Utilization During Endurance Exercise In Men And Women After Endurance Training. Am J Physiol Endocrinol Metab. 2001;280(6):E898–E907. [PubMed]
  31. Wismann J, Willoughby D. Gender Differences In Carbohydrate Metabolism And Carbohydrate Loading. J Int Soc Sports Nutr. 2006;3:28–34. doi: 10.1186/1550-2783-3-1-28.[PMC free article] [PubMed] [CrossRef]
  32. Escobar KA, Vandusseldorp TA, Kerksick CM: Carbohydrate Intake And Resistance-Based Exercise: Are Current Recommendations Reflective Of Actual Need. Brit J Nutr 2016;In Press. [PubMed]
  33. Burke LM, Cox GR, Culmmings NK, Desbrow B. Guidelines For Daily Carbohydrate Intake: Do Athletes Achieve Them? Sports Med. 2001;31(4):267–299. doi: 10.2165/00007256-200131040-00003. [PubMed] [CrossRef]
  34. Sherman WM, Costill DL, Fink WJ, Hagerman FC, Armstrong LE, Murray TF. Effect Of A 42.2-Km Footrace And Subsequent Rest Or Exercise On Muscle Glycogen And Enzymes. J Appl Physiol. 1983;55:1219–1224. [PubMed]
  35. Bussau VA, Fairchild TJ, Rao A, Steele P, Fournier PA. Carbohydrate Loading In Human Muscle: An Improved 1 Day Protocol. Eur J Appl Physiol. 2002;87(3):290–295. doi: 10.1007/s00421-002-0621-5. [PubMed] [CrossRef]
  36. Fairchild TJ, Fletcher S, Steele P, Goodman C, Dawson B, Fournier PA. Rapid Carbohydrate Loading After A Short Bout Of Near Maximal-Intensity Exercise. Med Sci Sports Exerc. 2002;34(6):980–986. doi: 10.1097/00005768-200206000-00012.[PubMed] [CrossRef]
  37. Wright DA, Sherman WM, Dernbach AR. Carbohydrate Feedings Before, During, Or In Combination Improve Cycling Endurance Performance. J Appl Physiol. 1991;71(3):1082–1088.[PubMed]
  38. Neufer PD, Costill DL, Flynn MG, Kirwan JP, Mitchell JB, Houmard J. Improvements In Exercise Performance: Effects Of Carbohydrate Feedings And Diet. J Appl Physiol. 1987;62(3):983–988. [PubMed]
  39. Sherman WM, Brodowicz G, Wright DA, Allen WK, Simonsen J, Dernbach A. Effects Of 4 H Preexercise Carbohydrate Feedings On Cycling Performance. Med Sci Sports Exerc. 1989;21(5):598–604. doi: 10.1249/00005768-198910000-00017. [PubMed] [CrossRef]
  40. Reed MJ, Brozinick JT, Jr, Lee MC, Ivy JL. Muscle Glycogen Storage Postexercise: Effect Of Mode Of Carbohydrate Administration. J Appl Physiol. 1989;66(2):720–726. [PubMed]
  41. Keizer H, Kuipers H, Van Kranenburg G. Influence Of Liquid And Solid Meals On Muscle Glycogen Resynthesis, Plasma Fuel Hormone Response, And Maximal Physical Working Capacity. Int J Sports Med. 1987;8:99–104. doi: 10.1055/s-2008-1025649.[PubMed] [CrossRef]
  42. Foster C, Costill DL, Fink WJ. Effects Of Preexercise Feedings On Endurance Performance. Med Sci Sports Exerc. 1979;11:1–5.[PubMed]
  43. Moseley L, Lancaster GI, Jeukendrup AE. Effects Of Timing Of Pre-Exercise Ingestion Of Carbohydrate On Subsequent Metabolism And Cycling Performance. Eur J Appl Physiol. 2003;88(4-5):453–458. doi: 10.1007/s00421-002-0728-8.[PubMed] [CrossRef]
  44. Hawley JA, Burke LM. Effect Of Meal Frequency And Timing On Physical Performance. Br J Nutr. 1997;77(Suppl 1):S91–103. doi: 10.1079/BJN19970107. [PubMed] [CrossRef]
  45. Galloway SD, Lott MJ, Toulouse LC. Preexercise Carbohydrate Feeding And High-Intensity Exercise Capacity: Effects Of Timing Of Intake And Carbohydrate Concentration. Int J Sport Nutr Exerc Metab. 2014;24(3):258–266. doi: 10.1123/ijsnem.2013-0119.[PubMed] [CrossRef]
  46. Febbraio MA, Keenan J, Angus DJ, Campbell SE, Garnham AP. Preexercise Carbohydrate Ingestion, Glucose Kinetics, And Muscle Glycogen Use: Effect Of The Glycemic Index. J Appl Physiol. 2000;89(5):1845–1851. [PubMed]
  47. Febbraio MA, Stewart KL. Cho Feeding Before Prolonged Exercise: Effect Of Glycemic Index On Muscle Glycogenolysis And Exercise Performance. J Appl Physiol. 1996;81(3):1115–1120.[PubMed]
  48. Jeukendrup AE. Carbohydrate Intake During Exercise And Performance. Nutrition. 2004;20(7-8):669–677. doi: 10.1016/j.nut.2004.04.017. [PubMed] [CrossRef]
  49. Jeukendrup AE. Carbohydrate Feeding During Exercise. Eur J Sport Sci. 2008;8(2):77–86. doi: 10.1080/17461390801918971.[CrossRef]
  50. Fielding RA, Costill DL, Fink WJ, King DS, Hargreaves M, Kovaleski JE. Effect Of Carbohydrate Feeding Frequencies And Dosage On Muscle Glycogen Use During Exercise. Med Sci Sports Exerc. 1985;17(4):472–476. doi: 10.1249/00005768-198508000-00012. [PubMed] [CrossRef]
  51. Schweitzer GG, Smith JD, Lecheminant JD. Timing Carbohydrate Beverage Intake During Prolonged Moderate Intensity Exercise Does Not Affect Cycling Performance. Int J Exerc Sci. 2009;2(1):4–18. [PMC free article] [PubMed]
  52. Heesch MW, Mieras ME, Slivka DR. The Performance Effect Of Early Versus Late Carbohydrate Feedings During Prolonged Exercise. Appl Physiol Nutr Metab. 2014;39(1):58–63. doi: 10.1139/apnm-2013-0034. [PubMed] [CrossRef]
  53. Widrick JJ, Costill DL, Fink WJ, Hickey MS, Mcconell GK, Tanaka H. Carbohydrate Feedings And Exercise Performance: Effect Of Initial Muscle Glycogen Concentration. J Appl Physiol. 1993;74(6):2998–3005. [PubMed]
  54. Febbraio MA, Chiu A, Angus DJ, Arkinstall MJ, Hawley JA. Effects Of Carbohydrate Ingestion Before And During Exercise On Glucose Kinetics And Performance. J Appl Physiol. 2000;89(6):2220–2226. [PubMed]
  55. Newell ML, Hunter AM, Lawrence C, Tipton KD, Galloway SD. The Ingestion Of 39 Or 64 G.H(-1) Of Carbohydrate Is Equally Effective At Improving Endurance Exercise Performance In Cyclists. Int J Sport Nutr Exerc Metab. 2015;25(3):285–292. doi: 10.1123/ijsnem.2014-0134. [PubMed] [CrossRef]
  56. Colombani PC, Mannhart C, Mettler S. Carbohydrates And Exercise Performance In Non-Fasted Athletes: A Systematic Review Of Studies Mimicking Real-Life. Nutr J. 2013;12:16. doi: 10.1186/1475-2891-12-16. [PMC free article] [PubMed] [CrossRef]
  57. Pochmuller M, Schwingshackl L, Colombani PC, Hoffmann G. A Systematic Review And Meta-Analysis Of Carbohydrate Benefits Associated With Randomized Controlled Competition-Based Performance Trials. J Int Soc Sports Nutr. 2016;13:27. doi: 10.1186/s12970-016-0139-6. [PMC free article] [PubMed] [CrossRef]
  58. Phillips SM, Sproule J, Turner AP. Carbohydrate Ingestion During Team Games Exercise: Current Knowledge And Areas For Future Investigation. Sports Med. 2011;41(7):559–585. doi: 10.2165/11589150-000000000-00000. [PubMed] [CrossRef]
  59. Clarke ND, Drust B, Maclaren DP, Reilly T. Fluid Provision And Metabolic Responses To Soccer-Specific Exercise. Eur J Appl Physiol. 2008;104(6):1069–1077. doi: 10.1007/s00421-008-0864-x. [PubMed] [CrossRef]
  60. Mizuno S, Kojima C, Goto K. Timing Of Carbohydrate Ingestion Did Not Affect Inflammatory Response And Exercise Performance During Prolonged Intermittent Running. Spring. 2016;5:506. doi: 10.1186/s40064-016-2108-6. [PMC free article][PubMed] [CrossRef]
  61. Ivy JL. Glycogen Resynthesis After Exercise: Effect Of Carbohydrate Intake. Int J Sports Med. 1998;19(Suppl 2):S142–S145. doi: 10.1055/s-2007-971981. [PubMed] [CrossRef]
  62. Jentjens R, Jeukendrup A. Determinants Of Post-Exercise Glycogen Synthesis During Short-Term Recovery. Sports Med. 2003;33(2):117–144. doi: 10.2165/00007256-200333020-00004.[PubMed] [CrossRef]
  63. Jentjens R, Van Loon L, Mann CH. Wagenmakers Ajm, Jeukendrup Ae: Addition Of Protein And Amino Acids To Carbohydrates Does Not Enhance Postexercise Muscle Glycogen Synthesis. J Appl Physiol. 2001;91:839–846. [PubMed]
  64. Jentjens R, Jeukendrup AE. Determinants Of Post-Exercise Glycogen Synthesis During Short-Term Recovery. Sports Med. 2003;33:117–144. doi: 10.2165/00007256-200333020-00004.[PubMed] [CrossRef]
  65. Nieman DC, Davis JM, Henson DA, Gross SJ, Dumke CL, Utter AC, Vinci DM, Carson JA, Brown A, Mcanulty SR, et al. Muscle Cytokine Mrna Changes After 2.5 H Of Cycling: Influence Of Carbohydrate. Med Sci Sports Exerc. 2005;37(8):1283–1290. doi: 10.1249/01.mss.0000175054.99588.b1. [PubMed] [CrossRef]
  66. Nieman DC, Davis JM, Henson DA, Walberg-Rankin J, Shute M, Dumke CL, Utter AC, Vinci DM, Carson JA, Brown A, et al. Carbohydrate Ingestion Influences Skeletal Muscle Cytokine Mrna And Plasma Cytokine Levels After A 3-H Run. J Appl Physiol. 2003;94(5):1917–1925. doi: 10.1152/japplphysiol.01130.2002.[PubMed] [CrossRef]
  67. Nicholas CW, Green PA, Hawkins RD. Carbohydrate Intake And Recovery Of Intermittent Running Capacity. Int J Sport Nutr. 1997;7:251–260. doi: 10.1123/ijsn.7.4.251. [PubMed] [CrossRef]
  68. Macdougall JD, Ray S, Sale DG, Mccartney N, Lee P, Garner S. Muscle Substrate Utilization And Lactate Production. Can J Appl Physiol. 1999;24(3):209–215. doi: 10.1139/h99-017.[PubMed] [CrossRef]
  69. Tesch PA, Colliander EB, Kaiser P. Muscle Metabolism During Intense, Heavy-Resistance Exercise. Eur J Appl Physiol Occup Physiol. 1986;55(4):362–366. doi: 10.1007/BF00422734.[PubMed] [CrossRef]
  70. Pascoe DD, Costill DL, Fink WJ, Robergs RA, Zachwieja JJ. Glycogen Resynthesis In Skeletal Muscle Following Resistive Exercise. Med Sci Sports Exerc. 1993;25(3):349–354. doi: 10.1249/00005768-199303000-00009. [PubMed] [CrossRef]
  71. Haff GG, Stone MH, Warren BJ, Keith R, Johnson RL, Nieman DC, Williams F, Kirsey KB. The Effect Of Carbohydrate Supplementation On Multiple Sessions And Bouts Of Resistance Exercise. J Strength Cond Res. 1999;13(2):111–117.
  72. Dalton RA, Rankin JW, Sebolt D, Gwazdauskas F. Acute Carbohydrate Consumption Does Not Influence Resistance Exercise Performance During Energy Restriction. Int J Sport Nutr. 1999;9(4):319–332. doi: 10.1123/ijsn.9.4.319. [PubMed] [CrossRef]
  73. Haff GG, Koch AJ, Potteiger JA, Kuphal KE, Magee LM, Green SB, Jakicic JJ. Carbohydrate Supplementation Attenuates Muscle Glycogen Loss During Acute Bouts Of Resistance Exercise. Int J Sport Nutr Exerc Metab. 2000;10(3):326–339. doi: 10.1123/ijsnem.10.3.326. [PubMed] [CrossRef]
  74. Kulik JR, Touchberry CD, Kawamori N, Blumert PA, Crum AJ, Haff GG. Supplemental Carbohydrate Ingestion Does Not Improve Performance Of High-Intensity Resistance Exercise. J Strength Cond Res. 2008;22(4):1101–1107. doi: 10.1519/JSC.0b013e31816d679b. [PubMed] [CrossRef]
  75. Yaspelkis BB, Patterson JG, Anderla PA, Ding Z, Ivy JL. Carbohydrate Supplementation Spares Muscle Glycogen During Variable-Intensity Exercise. J Appl Physiol. 1993;75(4):1477–1485. [PubMed]
  76. Jeukendrup AE, Jentjens R, Moseley L. Nutritional Considerations In Triathlon. Sports Med. 2005;35(2):163–181. doi: 10.2165/00007256-200535020-00005. [PubMed] [CrossRef]
  77. Ivy JL, Res PT, Sprague RC, Widzer MO. Effect Of A Carbohydrate-Protein Supplement On Endurance Performance During Exercise Of Varying Intensity. Int J Sport Nutr Exerc Metab. 2003;13(3):382–395. doi: 10.1123/ijsnem.13.3.382.[PubMed] [CrossRef]
  78. Saunders MJ, Kane MD, Todd MK. Effects Of A Carbohydrate-Protein Beverage On Cycling Endurance And Muscle Damage. Med Sci Sports Exerc. 2004;36(7):1233–1238. doi: 10.1249/01.MSS.0000132377.66177.9F. [PubMed] [CrossRef]
  79. Saunders MJ, Luden ND, Herrick JE. Consumption Of An Oral Carbohydrate-Protein Gel Improves Cycling Endurance And Prevents Postexercise Muscle Damage. J Strength Cond Res. 2007;21(3):678–684. [PubMed]
  80. Mclellan TM, Pasiakos SM, Lieberman HR. Effects Of Protein In Combination With Carbohydrate Supplements On Acute Or Repeat Endurance Exercise Performance: A Systematic Review. Sports Med. 2014;44(4):535–550. doi: 10.1007/s40279-013-0133-y. [PubMed] [CrossRef]
  81. Rustad PL, Sailer M, Cumming KT, Jeppesen PB, Kolnes KJ, Sollie O, Franch J, Ivy JL, Daniel H, Jensen J. Intake Of Protein Plus Carbohydrate During The First Two Hours After Exhaustive Cycling Improves Performance The Following Day. PLoS One. 2016;11(4):E0153229. doi: 10.1371/journal.pone.0153229.[PMC free article] [PubMed] [CrossRef]
  82. Ivy JL, Goforth HW, Jr, Damon BM, Mccauley TR, Parsons EC, Price TB. Early Postexercise Muscle Glycogen Recovery Is Enhanced With A Carbohydrate-Protein Supplement. Journal Of Applied Physiology (Bethesda, Md : 1985) 2002;93(4):1337–1344. doi: 10.1152/japplphysiol.00394.2002. [PubMed] [CrossRef]
  83. Zawadzki KM, Yaspelkis BB, 3rd, Ivy JL. Carbohydrate-Protein Complex Increases The Rate Of Muscle Glycogen Storage After Exercise. J Appl Physiol. 1992;72(5):1854–1859. [PubMed]
  84. Berardi JM, Noreen EE, Lemon PW. Recovery From A Cycling Time Trial Is Enhanced With Carbohydrate-Protein Supplementation Vs. Isoenergetic Carbohydrate Supplementation. J Int Soc Sports Nutr. 2008;5:24. doi: 10.1186/1550-2783-5-24.[PMC free article] [PubMed] [CrossRef]
  85. Berardi JM, Price TB, Noreen EE, Lemon PW. Postexercise Muscle Glycogen Recovery Enhanced With A Carbohydrate-Protein Supplement. Med Sci Sports Exerc. 2006;38(6):1106–1113. doi: 10.1249/01.mss.0000222826.49358.f3. [PubMed] [CrossRef]
  86. Howarth KR, Moreau NA, Phillips SM, Gibala MJ. Co-Ingestion Of Protein With Carbohydrate During Recovery From Endurance Exercise Stimulates Skeletal Muscle Protein Synthesis In Humans. J Appl Physiol. 2008;106(4):1394–1402. doi: 10.1152/japplphysiol.90333.2008. [PubMed] [CrossRef]
  87. Kraemer WJ, Hatfield DL, Spiering BA, Vingren JL, Fragala MS, Ho JY, Volek JS, Anderson JM, Maresh CM. Effects Of A Multi-Nutrient Supplement On Exercise Performance And Hormonal Responses To Resistance Exercise. Eur J Appl Physiol. 2007;101(5):637–646. doi: 10.1007/s00421-007-0535-3. [PubMed] [CrossRef]
  88. Baty JJ, Hwang H, Ding Z, Bernard JR, Wang B, Kwon B, Ivy JL. The Effect Of A Carbohydrate And Protein Supplement On Resistance Exercise Performance, Hormonal Response, And Muscle Damage. J Strength Cond Res. 2007;21(2):321–329.[PubMed]
  89. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR. Timing Of Amino Acid-Carbohydrate Ingestion Alters Anabolic Response Of Muscle To Resistance Exercise. Am J Physiol Endocrinol Metab. 2001;281(2):E197–E206. [PubMed]
  90. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Volpi E, Rasmussen BB. Essential Amino Acid And Carbohydrate Ingestion Before Resistance Exercise Does Not Enhance Postexercise Muscle Protein Synthesis. J Appl Physiol (1985) 2009;106(5):1730–1739. doi: 10.1152/japplphysiol.90395.2008. [PMC free article][PubMed] [CrossRef]
  91. White JP, Wilson JM, Austin KG, Greer BK, St John N, Panton LB. Effect Of Carbohydrate-Protein Supplement Timing On Acute Exercise-Induced Muscle Damage. J Int Soc Sports Nutr. 2008;5:5. doi: 10.1186/1550-2783-5-5. [PMC free article] [PubMed] [CrossRef]
  92. Beelen M, Koopman R, Gijsen AP, Vandereyt H, Kies AK, Kuipers H, Saris WH, Van Loon LJ. Protein Coingestion Stimulates Muscle Protein Synthesis During Resistance-Type Exercise. Am J Physiol Endocrinol Metab. 2008;295(1):E70–E77. doi: 10.1152/ajpendo.00774.2007. [PubMed] [CrossRef]
  93. Bird SP, Mabon T, Pryde M, Feebrey S, Cannon J. Triphasic Multinutrient Supplementation During Acute Resistance Exercise Improves Session Volume Load And Reduces Muscle Damage In Strength-Trained Athletes. Nutr Res. 2013;33(5):376–387. doi: 10.1016/j.nutres.2013.03.002. [PubMed] [CrossRef]
  94. Bird SP, Tarpenning KM, Marino FE. Effects Of Liquid Carbohydrate/Essential Amino Acid Ingestion On Acute Hormonal Response During A Single Bout Of Resistance Exercise In Untrained Men. Nutrition. 2006;22(4):367–375. doi: 10.1016/j.nut.2005.11.005. [PubMed] [CrossRef]
  95. Bird SP, Tarpenning KM, Marino FE. Liquid Carbohydrate/Essential Amino Acid Ingestion During A Short-Term Bout Of Resistance Exercise Suppresses Myofibrillar Protein Degradation. Metab Clin Exp. 2006;55(5):570–577. doi: 10.1016/j.metabol.2005.11.011. [PubMed] [CrossRef]
  96. Bird SP, Tarpenning KM, Marino FE. Independent And Combined Effects Of Liquid Carbohydrate/Essential Amino Acid Ingestion On Hormonal And Muscular Adaptations Following Resistance Training In Untrained Men. Eur J Appl Physiol. 2006;97(2):225–238. doi: 10.1007/s00421-005-0127-z. [PubMed] [CrossRef]
  97. Hulmi JJ, Laakso M, Mero AA, Hakkinen K, Ahtiainen JP, Peltonen H. The Effects Of Whey Protein With Or Without Carbohydrates On Resistance Training Adaptations. J Int Soc Sports Nutr. 2015;12:48. doi: 10.1186/s12970-015-0109-4.[PMC free article] [PubMed] [CrossRef]
  98. Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, Ziegenfuss T, Lopez H, Landis J, Antonio J. International Society Of Sports Nutrition Position Stand: Creatine Supplementation And Exercise. J Int Soc Sports Nutr. 2007;4:6. doi: 10.1186/1550-2783-4-6. [PMC free article] [PubMed] [CrossRef]
  99. Kreider RB. Effects Of Creatine Supplementation On Performance And Training Adaptations. Mol Cell Biochem. 2003;244(1-2):89–94. doi: 10.1023/A:1022465203458. [PubMed] [CrossRef]
  100. Kreider RB, Ferreira M, Wilson M, Grindstaff P, Plisk S, Reinardy J, Cantler E, Al A. Effects Of Creatine Supplementation On Body Composition, Strength, And Sprint Performance. Med Sci Sports Exerc. 1998;30(1):73–82. doi: 10.1097/00005768-199801000-00011. [PubMed] [CrossRef]
  101. Abdulla H, Smith K, Atherton PJ, Idris I. Role Of Insulin In The Regulation Of Human Skeletal Muscle Protein Synthesis And Breakdown: A Systematic Review And Meta-Analysis. Diabetologia. 2016;59(1):44–55. doi: 10.1007/s00125-015-3751-0.[PubMed] [CrossRef]
  102. Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A, et al. Disassociation Between The Effects Of Amino Acids And Insulin On Signaling, Ubiquitin Ligases, And Protein Turnover In Human Muscle. Am J Physiol Endocrinol Metab. 2008;295(3):E595–E604. doi: 10.1152/ajpendo.90411.2008. [PMC free article] [PubMed] [CrossRef]
  103. Rennie MJ, Bohe J, Smith K, Wackerhage H, Greenhaff P. Branched-Chain Amino Acids As Fuels And Anabolic Signals In Human Muscle. J Nutr. 2006;136(1 Suppl):264s–268s. [PubMed]
  104. Power O, Hallihan A, Jakeman P. Human Insulinotropic Response To Oral Ingestion Of Native And Hydrolysed Whey Protein. Amino Acids. 2009;37(2):333–339. doi: 10.1007/s00726-008-0156-0. [PubMed] [CrossRef]
  105. Staples AW, Burd NA, West DW, Currie KD, Atherton PJ, Moore DR, Rennie MJ, Macdonald MJ, Baker SK, Phillips SM. Carbohydrate Does Not Augment Exercise-Induced Protein Accretion Versus Protein Alone. Med Sci Sports Exerc. 2011;43(7):1154–1161. doi: 10.1249/MSS.0b013e31820751cb.[PubMed] [CrossRef]
  106. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An Oral Essential Amino Acid-Carbohydrate Supplement Enhances Muscle Protein Anabolism After Resistance Exercise. J Appl Physiol. 2000;88(2):386–392. [PubMed]
  107. Pasiakos SM, Mcclung HL, Mcclung JP, Margolis LM, Andersen NE, Cloutier GJ, Pikosky MA, Rood JC, Fielding RA, Young AJ. Leucine-Enriched Essential Amino Acid Supplementation During Moderate Steady State Exercise Enhances Postexercise Muscle Protein Synthesis. Am J Clin Nutr. 2011;94(3):809–818. doi: 10.3945/ajcn.111.017061. [PubMed] [CrossRef]
  108. Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR. Stimulation Of Net Muscle Protein Synthesis By Whey Protein Ingestion Before And After Exercise. Am J Physiol Endocrinol Metab. 2007;292(1):E71–E76. doi: 10.1152/ajpendo.00166.2006. [PubMed] [CrossRef]
  109. Andersen LL, Tufekovic G, Zebis MK, Crameri RM, Verlaan G, Kjaer M, Suetta C, Magnusson P, Aagaard P. The Effect Of Resistance Training Combined With Timed Ingestion Of Protein On Muscle Fiber Size And Muscle Strength. Metab Clin Exp. 2005;54(2):151–156. doi: 10.1016/j.metabol.2004.07.012.[PubMed] [CrossRef]
  110. Hoffman JR, Ratamess NA, Tranchina CP, Rashti SL, Kang J, Faigenbaum AD. Effect Of Protein-Supplement Timing On Strength, Power, And Body-Composition Changes In Resistance-Trained Men. Int J Sport Nutr Exerc Metab. 2009;19(2):172–185. doi: 10.1123/ijsnem.19.2.172. [PubMed] [CrossRef]
  111. Delmonico MJ, Kostek MC, Johns J, Hurley BF, Conway JM. Can Dual Energy X-Ray Absorptiometry Provide A Valid Assessment Of Changes In Thigh Muscle Mass With Strength Training In Older Adults? Eur J Clin Nutr. 2008;62(12):1372–1378. doi: 10.1038/sj.ejcn.1602880. [PubMed] [CrossRef]
  112. Schoenfeld BJ, Aragon A, Wilborn C, Urbina S, Hayward SB, Krieger JW. Pre- Versus Post-Exercise Protein Intake Has Similar Effects On Muscular Adaptations. Peer J. 2016;3(5):e2825.[PMC free article] [PubMed]
  113. Ayers K, Pazmino-Cevallos M, Dobose C. The 20-Hour Rule: Student-Athletes Time Commitment To Athletics And Academics. Vahperd Journal. 2012;33(1):22.
  114. Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ. Anabolic Signaling Deficits Underlie Amino Acid Resistance Of Wasting, Aging Muscle. FASEB J. 2005;19(3):422–424. [PubMed]
  115. West DW, Burd NA, Coffey VG, Baker SK, Burke LM, Hawley JA, Moore DR, Stellingwerff T, Phillips SM. Rapid Aminoacidemia Enhances Myofibrillar Protein Synthesis And Anabolic Intramuscular Signaling Responses After Resistance Exercise. Am J Clin Nutr. 2011;94(3):795–803. doi: 10.3945/ajcn.111.013722. [PubMed] [CrossRef]
  116. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E, Rasmussen BB. Leucine-Enriched Essential Amino Acid And Carbohydrate Ingestion Following Resistance Exercise Enhances Mtor Signaling And Protein Synthesis In Human Muscle. Am J Physiol Endocrinol Metab. 2008;294(2):E392–E400. doi: 10.1152/ajpendo.00582.2007. [PMC free article] [PubMed] [CrossRef]
  117. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Cadenas JG, Yoshizawa F, Volpi E, Rasmussen BB. Nutrient Signalling In The Regulation Of Human Muscle Protein Synthesis. J Physiol. 2007;582(Pt 2):813–823. doi: 10.1113/jphysiol.2007.134593.[PMC free article] [PubMed] [CrossRef]
  118. Bohe J, Low JF, Wolfe RR, Rennie MJ. Latency And Duration Of Stimulation Of Human Muscle Protein Synthesis During Continuous Infusion Of Amino Acids. J Physiol. 2001;532(Pt 2):575–579. doi: 10.1111/j.1469-7793.2001.0575f.x.[PMC free article] [PubMed] [CrossRef]
  119. Burd NA, West DW, Moore DR, Atherton PJ, Staples AW, Prior T, Tang JE, Rennie MJ, Baker SK, Phillips SM. Enhanced Amino Acid Sensitivity Of Myofibrillar Protein Synthesis Persists For Up To 24 H After Resistance Exercise In Young Men. J Nutr. 2011;141(4):568–573. doi: 10.3945/jn.110.135038. [PubMed] [CrossRef]
  120. Mitchell CJ, Churchward-Venne TA, Parise G, Bellamy L, Baker SK, Smith K, Atherton PJ, Phillips SM. Acute Post-Exercise Myofibrillar Protein Synthesis Is Not Correlated With Resistance Training-Induced Muscle Hypertrophy In Young Men. PLoS One. 2014;9(2):E89431. doi: 10.1371/journal.pone.0089431.[PMC free article] [PubMed] [CrossRef]
  121. Willoughby DS, Stout JR, Wilborn CD. Effects Of Resistance Training And Protein Plus Amino Acid Supplementation On Muscle Anabolism, Mass. And Strength Amino Acids. 2007;32(4):467–477. doi: 10.1007/s00726-006-0398-7. [PubMed] [CrossRef]
  122. Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M. Timing Of Postexercise Protein Intake Is Important For Muscle Hypertrophy With Resistance Training In Elderly Humans. J Physiol. 2001;535(Pt 1):301–311. doi: 10.1111/j.1469-7793.2001.00301.x. [PMC free article] [PubMed] [CrossRef]
  123. Borde R, Hortobagyi T, Granacher U. Dose-Response Relationships Of Resistance Training In Healthy Old Adults: A Systematic Review And Meta-Analysis. Sports Med. 2015;45(12):1693–1720. doi: 10.1007/s40279-015-0385-9.[PMC free article] [PubMed] [CrossRef]
  124. Schoenfeld BJ, Aragon A, Wilborn C, Urbina SL, Hayward SE, Krieger J. Pre- Versus Post-Exercise Protein Intake Has Similar Effects On Muscular Adaptations. Peerj. 2017;5:E2825. doi: 10.7717/peerj.2825. [PMC free article] [PubMed] [CrossRef]
  125. Aragon AA, Schoenfeld BJ. Nutrient Timing Revisited: Is There A Post-Exercise Anabolic Window? J Int Soc Sports Nutr. 2013;10(1):5. doi: 10.1186/1550-2783-10-5. [PMC free article][PubMed] [CrossRef]
  126. Schoenfeld BJ, Aragon AA, Krieger JW. The Effect Of Protein Timing On Muscle Strength And Hypertrophy: A Meta-Analysis. J Int Soc Sports Nutr. 2013;10(1):53. doi: 10.1186/1550-2783-10-53. [PMC free article] [PubMed] [CrossRef]
  127. Morton RW, Mcglory C, Phillips SM. Nutritional Interventions To Augment Resistance Training-Induced Skeletal Muscle Hypertrophy. Front Physiol. 2015;6:245. doi: 10.3389/fphys.2015.00245. [PMC free article] [PubMed] [CrossRef]
  128. Macnaughton LS, Wardle SL, Witard OC, Mcglory C, Hamilton DL, Jeromson S, Lawrence CE, Wallis GA, Tipton KD. The Response Of Muscle Protein Synthesis Following Whole-Body Resistance Exercise Is Greater Following 40 G Than 20 G Of Ingested Whey Protein. Phys Rep. 2016;4(15):e12893. doi: 10.14814/phy2.12893. [PMC free article] [PubMed] [CrossRef]
  129. Arciero PJ, Ives SJ, Norton C, Escudero D, Minicucci O, O’brien G, Paul M, Ormsbee MJ, Miller V, Sheridan C, et al. Protein-Pacing And Multi-Component Exercise Training Improves Physical Performance Outcomes In Exercise-Trained Women: The Prise 3 Study. Nutrients. 2016;8(6):E332. doi: 10.3390/nu8060332.[PMC free article] [PubMed] [CrossRef]
  130. Ives SJ, Norton C, Miller V, Minicucci O, Robinson J, O’brien G, Escudero D, Paul M, Sheridan C, Curran K, et al. Multi-Modal Exercise Training And Protein-Pacing Enhances Physical Performance Adaptations Independent Of Growth Hormone And Bdnf But May Be Dependent On Igf-1 In Exercise-Trained Men. Growth Hormon IGF Res. 2017;32:60–70. doi: 10.1016/j.ghir.2016.10.002. [PubMed] [CrossRef]
  131. Keim NL, Van Loan MD, Horn WF, Barbieri TF, Mayclin PL. Weight Loss Is Greater With Consumption Of Large Morning Meals And Fat-Free Mass Is Preserved With Large Evening Meals In Women On A Controlled Weight Reduction Regimen. J Nutr. 1997;127(1):75–82. [PubMed]
  132. De Castro JM. The Time Of Day Of Food Intake Influences Overall Intake In Humans. J Nutr. 2004;134(1):104–111. [PubMed]
  133. De Castro JM. The Time Of Day And The Proportions Of Macronutrients Eaten Are Related To Total Daily Food Intake. Br J Nutr. 2007;98(5):1077–1083. doi: 10.1017/S0007114507754296.[PubMed] [CrossRef]
  134. Wu T, Sun L, Zhuge F, Guo X, Zhao Z, Tang R, Chen Q, Chen L, Kato H, Fu Z. Differential Roles Of Breakfast And Supper In Rats Of A Daily Three-Meal Schedule Upon Circadian Regulation And Physiology. Chronobiol Int. 2011;28(10):890–903. doi: 10.3109/07420528.2011.622599. [PubMed] [CrossRef]
  135. Loboda A, Kraft WK, Fine B, Joseph J, Nebozhyn M, Zhang C, He Y, Yang X, Wright C, Morris M, et al. Diurnal Variation Of The Human Adipose Transcriptome And The Link To Metabolic Disease. BMC Med Genet. 2009;2:7. [PMC free article] [PubMed]
  136. Ma Y, Bertone ER, Stanek EJ, 3rd, Reed GW, Hebert JR, Cohen NL, Merriam PA, Ockene IS. Association Between Eating Patterns And Obesity In A Free-Living Us Adult Population. Am J Epidemiol. 2003;158(1):85–92. doi: 10.1093/aje/kwg117.[PubMed] [CrossRef]
  137. Jakubowicz D, Barnea M, Wainstein J, Froy O. High Caloric Intake At Breakfast Vs. Dinner Differentially Influences Weight Loss Of Overweight And Obese Women. Obesity (Silver Spring) 2013;21(12):2504–2512. doi: 10.1002/oby.20460. [PubMed] [CrossRef]
  138. Fabry P, Hejl Z, Fodor J, Braun T, Zvolankova K. The Frequency Of Meals. Its Relation To Overweight, Hypercholesterolaemia, And Decreased Glucose-Tolerance. Lancet. 1964;2(7360):614–615. doi: 10.1016/S0140-6736(64)90510-0. [PubMed] [CrossRef]
  139. Hejda S, Fabry P. Frequency Of Food Intake In Relation To Some Parameters Of The Nutritional Status. Nutr Dieta Eur Rev Nutr Diet. 1964;64:216–228. [PubMed]
  140. Metzner HL, Lamphiear DE, Wheeler NC, Larkin FA. The Relationship Between Frequency Of Eating And Adiposity In Adult Men And Women In The Tecumseh Community Health Study. Am J Clin Nutr. 1977;30(5):712–715. [PubMed]
  141. Farshchi HR, Taylor MA, Macdonald IA. Beneficial Metabolic Effects Of Regular Meal Frequency On Dietary Thermogenesis, Insulin Sensitivity, And Fasting Lipid Profiles In Healthy Obese Women. Am J Clin Nutr. 2005;81(1):16–24.[PubMed]
  142. Cameron JD, Cyr MJ, Doucet E. Increased Meal Frequency Does Not Promote Greater Weight Loss In Subjects Who Were Prescribed An 8-Week Equi-Energetic Energy-Restricted Diet. Br J Nutr. 2010;103(8):1098–1101. [PubMed]
  143. Alencar MK, Beam JR, Mccormick JJ, White AC, Salgado RM, Kravitz LR, Mermier CM, Gibson AL, Conn CA, Kolkmeyer D, et al. Increased Meal Frequency Attenuates Fat-Free Mass Losses And Some Markers Of Health Status With A Portion-Controlled Weight Loss Diet. Nutr Res. 2015;35(5):375–383. doi: 10.1016/j.nutres.2015.03.003. [PubMed] [CrossRef]
  144. Kulovitz MG, Kravitz LR, Mermier C, Gibson AL, Conn CA, Kolkmeyer D, Kerksick CM. Potential Role Of Meal Frequency As A Strategy For Weight Loss And Health In Overweight Or Obese Adults. Nutrition. 2014;30(4):386–392. doi: 10.1016/j.nut.2013.08.009. [PubMed] [CrossRef]
  145. Schoenfeld BJ, Aragon AA, Krieger JW. Effects Of Meal Frequency On Weight Loss And Body Composition: A Meta-Analysis. Nutr Rev. 2015;73(2):69–82. doi: 10.1093/nutrit/nuu017.[PubMed] [CrossRef]
  146. La Bounty PM, Campbell BI, Wilson J, Galvan E, Berardi J, Kleiner SM, Kreider RB, Stout JR, Ziegenfuss T, Spano M, et al. International Society Of Sports Nutrition Position Stand: Meal Frequency. J Int Soc Sports Nutr. 2011;8:4. doi: 10.1186/1550-2783-8-4. [PMC free article] [PubMed] [CrossRef]
  147. Phillips SM. The Science Of Muscle Hypertrophy: Making Dietary Protein Count. Proc Nutr Soc. 2011;70(1):100–103. doi: 10.1017/S002966511000399X. [PubMed] [CrossRef]
  148. Phillips SM. A Brief Review Of Critical Processes In Exercise-Induced Muscular Hypertrophy. Sports Med. 2014;44(Suppl 1):S71–S77. doi: 10.1007/s40279-014-0152-3.[PMC free article] [PubMed] [CrossRef]
  149. Moore DR, Areta J, Coffey VG, Stellingwerff T, Phillips SM, Burke LM, Cleroux M, Godin JP, Hawley JA. Daytime Pattern Of Post-Exercise Protein Intake Affects Whole-Body Protein Turnover In Resistance-Trained Males. Nutr Metab (Lond) 2012;9(1):91. doi: 10.1186/1743-7075-9-91. [PMC free article] [PubMed] [CrossRef]
  150. Areta JL, Burke LM, Ross ML, Camera DM, West DW, Broad EM, Jeacocke NA, Moore DR, Stellingwerff T, Phillips SM, et al. Timing And Distribution Of Protein Ingestion During Prolonged Recovery From Resistance Exercise Alters Myofibrillar Protein Synthesis. J Physiol. 2013;591(9):2319–2331. doi: 10.1113/jphysiol.2012.244897. [PMC free article] [PubMed] [CrossRef]
  151. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrere B. Slow And Fast Dietary Proteins Differently Modulate Postprandial Protein Accretion. Proc Natl Acad Sci U S A. 1997;94(26):14930–14935. doi: 10.1073/pnas.94.26.14930.[PMC free article] [PubMed] [CrossRef]
  152. Arciero PJ, Baur D, Connelly S, Ormsbee MJ. Timed-Daily Ingestion Of Whey Protein And Exercise Training Reduces Visceral Adipose Tissue Mass And Improves Insulin Resistance: The Prise Study. Journal Of Applied Physiology (Bethesda, Md : 1985) 2014;117(1):1–10. doi: 10.1152/japplphysiol.00152.2014.[PubMed] [CrossRef]
  153. Arciero PJ, Edmonds RC, Bunsawat K, Gentile CL, Ketcham C, Darin C, Renna M, Zheng Q, Zhang JZ, Ormsbee MJ. Protein-Pacing From Food Or Supplementation Improves Physical Performance In Overweight Men And Women: The Prise 2 Study. Nutrients. 2016;8(5):E288. doi: 10.3390/nu8050288.[PMC free article] [PubMed] [CrossRef]
  154. Arciero PJ, Gentile CL, Martin-Pressman R, Ormsbee MJ, Everett M, Zwicky L, Steele CA. Increased Dietary Protein And Combined High Intensity Aerobic And Resistance Exercise Improves Body Fat Distribution And Cardiovascular Risk Factors. Int J Sport Nutr Exerc Metab. 2006;16(4):373–392. doi: 10.1123/ijsnem.16.4.373. [PubMed] [CrossRef]
  155. Arciero PJ, Gentile CL, Pressman R, Everett M, Ormsbee MJ, Martin J, Santamore J, Gorman L, Fehling PC, Vukovich MD, et al. Moderate Protein Intake Improves Total And Regional Body Composition And Insulin Sensitivity In Overweight Adults. Metab Clin Exp. 2008;57(6):757–765. doi: 10.1016/j.metabol.2008.01.015. [PubMed] [CrossRef]
  156. Ruby M, Repka CP, Arciero PJ. Comparison Of Protein-Pacing Alone Or With Yoga/Stretching And Resistance Training On Glycemia, Total And Regional Body Composition, And Aerobic Fitness In Overweight Women. J Phys Act Health. 2016;13(7):754–764. doi: 10.1123/jpah.2015-0493. [PubMed] [CrossRef]
  157. Arciero PJ, Ormsbee MJ, Gentile CL, Nindl BC, Brestoff JR, Ruby M. Increased Protein Intake And Meal Frequency Reduces Abdominal Fat During Energy Balance And Energy Deficit. Obesity (Silver Spring) 2013;21(7):1357–1366. doi: 10.1002/oby.20296. [PubMed] [CrossRef]
  158. Arciero PJ, Edmonds R, He F, Ward E, Gumpricht E, Mohr A, Ormsbee MJ, Astrup A. Protein-Pacing Caloric-Restriction Enhances Body Composition Similarly In Obese Men And Women During Weight Loss And Sustains Efficacy During Long-Term Weight Maintenance. Nutrients. 2016;8(8):E476. doi: 10.3390/nu8080476. [PMC free article] [PubMed] [CrossRef]
  159. Millward DJ. A Protein-Stat Mechanism For Regulation Of Growth And Maintenance Of The Lean Body Mass. Nutr Res Rev. 1995;8(1):93–120. doi: 10.1079/NRR19950008. [PubMed] [CrossRef]
  160. Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, Smith K, Rennie MJ. Muscle Full Effect After Oral Protein: Time-Dependent Concordance And Discordance Between Human Muscle Protein Synthesis And Mtorc1 Signaling. Am J Clin Nutr. 2010;92(5):1080–1088. doi: 10.3945/ajcn.2010.29819.[PubMed] [CrossRef]
  161. Atherton PJ, Smith K. Muscle Protein Synthesis In Response To Nutrition And Exercise. J Physiol. 2012;590(5):1049–1057. doi: 10.1113/jphysiol.2011.225003. [PMC free article] [PubMed] [CrossRef]
  162. Baron KG, Reid KJ, Kern AS, Zee PC. Role Of Sleep Timing In Caloric Intake And Bmi. Obesity (Silver Spring) 2011;19(7):1374–1381. doi: 10.1038/oby.2011.100. [PubMed] [CrossRef]
  163. Ormsbee MJ, Gorman KA, Miller EA, Baur DA, Eckel LA, Contreras RJ, Panton LB, Spicer MT. Nighttime Feeding Likely Alters Morning Metabolism But Not Exercise Performance In Female Athletes. Appl Physiol Nutr Metab. 2016;41(7):719–727. doi: 10.1139/apnm-2015-0526. [PubMed] [CrossRef]
  164. Zwaan M, Burgard MA, Schenck CH, Mitchell JE. Night Time Eating: A Review Of The Literature. Eur Eat Disord Rev. 2003;11:7–24. doi: 10.1002/erv.501. [CrossRef]
  165. Kinsey AW, Ormsbee MJ. The Health Impact Of Nighttime Eating: Old And New Perspectives. Nutrients. 2015;7(4):2648–2662. doi: 10.3390/nu7042648. [PMC free article] [PubMed] [CrossRef]
  166. Trommelen J, Van Loon LJ. Pre-Sleep Protein Ingestion To Improve The Skeletal Muscle Adaptive Response To Exercise Training. Nutrients. 2016;8(12):E763. doi: 10.3390/nu8120763.[PMC free article] [PubMed] [CrossRef]
  167. Res P, Groen B, Pennings B, Beelen M, Wallis GA, Gijsen AP, Senden JM, Vanl LJ. Protein Ingestion Before Sleep Improves Postexercise Overnight Recovery. Med Sci Sports Exerc. 2012;44(8):1560–1569. doi: 10.1249/MSS.0b013e31824cc363.[PubMed] [CrossRef]
  168. Groen BB, Res PT, Pennings B, Hertle E, Senden JM, Saris WH, Van Loon LJ. Intragastric Protein Administration Stimulates Overnight Muscle Protein Synthesis In Elderly Men. Am J Physiol Endocrinol Metab. 2012;302(1):E52–E60. doi: 10.1152/ajpendo.00321.2011. [PubMed] [CrossRef]
  169. Madzima TA, Panton LB, Fretti SK, Kinsey AW, Ormsbee MJ. Night-Time Consumption Of Protein Or Carbohydrate Results In Increased Morning Resting Energy Expenditure In Active College-Aged Men. Br J Nutr. 2014;111(1):71–77. doi: 10.1017/S000711451300192X. [PubMed] [CrossRef]
  170. Kinsey AW, Eddy WR, Madzima TA, Panton LB, Arciero PJ, Kim JS, Ormsbee MJ. Influence Of Night-Time Protein And Carbohydrate Intake On Appetite And Cardiometabolic Risk In Sedentary Overweight And Obese Women. Br J Nutr. 2014;112(3):320–327. doi: 10.1017/S0007114514001068.[PubMed] [CrossRef]
  171. Kinsey AW, Cappadona SR, Panton LB, Allman BR, Contreras RJ, Hickner RC, Ormsbee MJ. The Effect Of Casein Protein Prior To Sleep On Fat Metabolism In Obese Men. Nutrients. 2016;8(8):E452. doi: 10.3390/nu8080452.[PMC free article] [PubMed] [CrossRef]
  172. Ormsbee MJ, Kinsey AW, Eddy WR, Madzima TA, Arciero PJ, Figueroa A, Panton LB. The Influence Of Nighttime Feeding Of Carbohydrate Or Protein Combined With Exercise Training On Appetite And Cardiometabolic Risk In Young Obese Women. Appl Physiol Nutr Metab. 2015;40(1):37–45. doi: 10.1139/apnm-2014-0256. [PubMed] [CrossRef]
  173. Figueroa A, Wong A, Kinsey A, Kalfon R, Eddy W, Ormsbee MJ. Effects Of Milk Proteins And Combined Exercise Training On Aortic Hemodynamics And Arterial Stiffness In Young Obese Women With High Blood Pressure. Am J Hypertens. 2014;27(3):338–344. doi: 10.1093/ajh/hpt224. [PubMed] [CrossRef]
  174. Snijders T, Res P, Smeets JS, Van Vliet S, Van Kranenburg J, Maase K, Kies AK, Verdijk LB, Van Loon LJ. Protein Ingestion Before Sleep Increases Muscle Mass And Strength Gains During Prolonged Resistance-Type Exercise Training In Healthy Young Men. J Nutr. 2015;145(6):1178–1184. doi: 10.3945/jn.114.208371.[PubMed] [CrossRef]
  175. Antonio J, Ellerbroek A, Peacock C, Silver T. Casein Protein Supplementation In Trained Men And Women: Morning Versus Evening. Int J Exerc Sci. 2017;10(3):479–486. [PMC free article][PubMed]

 

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください