熱中症の重症度別搬送人員数を最高気温と平均湿度別にプロットする

気温・湿度別の重症度別搬送人員

 熱中症の搬送人員と最高気温との相関関係を可視化し閾値をχ二乗検定するでは最高気温と搬送数をプロットした.今回は気象庁から湿度のデータをダウンロードし,重症度別にプロットして可視化する.

平均湿度のデータをダウンロードする

 データは気象庁の過去の気象データ・ダウンロードにある.

地点を選ぶ

地点を選ぶ
地点を選ぶ

項目を選ぶ

項目を選ぶ
項目を選ぶ

期間を選ぶ

期間を選ぶ
期間を選ぶ

表示オプションを選ぶ

表示オプションを選ぶ
表示オプションを選ぶ

Power Query でデータクレンジングする

「データの取得」「ファイルから」「フォルダーから」
「データの取得」「ファイルから」「フォルダーから」
プレビュー
プレビュー
「テキストフィルター」「指定の値で始まる...」
「テキストフィルター」「指定の値で始まる…」
フィルター条件を記述
フィルター条件を記述
Csv.Document関数を記述
Csv.Document関数を記述
第1引数に[Content], 第2引数に[Encoding=932]を指定
第1引数に[Content], 第2引数に[Encoding=932]を指定
「他の列の削除」
「他の列の削除」
Tableを展開する
Tableを展開する
「1行目をヘッダーとして使用」
「1行目をヘッダーとして使用」
「その他の列のピボット解除」
「その他の列のピボット解除」
ヘッダーは「年月日」「属性」「値」となる
ヘッダーは「年月日」「属性」「値」となる
「年月日」列のデータ型を「日付」にする
「年月日」列のデータ型を「日付」にする
「平均湿度」列のデータ型を「整数」にする
「平均湿度」列のデータ型を「整数」にする
「石狩」を「北海道」に置換する
「石狩」を「北海道」に置換する
カスタム列を挿入し右端1文字を削除する
カスタム列を挿入し右端1文字を削除する
「北海」を「北海道」に置換する
「北海」を「北海道」に置換する

クエリのマージ

クエリのマージ
クエリのマージ
テーブルと照合列の列を指定する
テーブルと照合列の列を指定する
Tableを展開し,都道府県コードのみチェックする
Tableを展開し,都道府県コードのみチェックする

 

SQL Server でデータを結合する

 上記の作業で得られたテーブルをテキストファイルで保存し,SQL Server のウィザードを使用してアップロードする.作業そのものは前回の記事を同様であり,省略する.

クエリ

 下記のクエリを実行すると重症度別の搬送人員が得られる.結果をヘッダー付きでコピーし,EXCELに貼り付ける.

USE EMERGENCYDB;
GO
SELECT	'軽症'	AS '重症度'
	,	E.軽症	AS '搬送数'
	,	A.人口 
	,	T.日別最高気温
	,	M.湿度
	,	E.都道府県コード
	,	T.都道府県
	,	T.年月日
FROM	dbo.Emergency	AS E
INNER	JOIN dbo.Temperature	AS T
ON	E.日付 = T.年月日
AND	E.都道府県コード = T.都道府県コード
INNER	JOIN	dbo.T_Moisture	AS M
ON	E.日付 = M.年月日
AND	E.都道府県コード = M.都道府県コード
INNER	JOIN	dbo.T_Population	AS A
ON	E.都道府県コード = A.都道府県コード
AND	YEAR(E.日付) = A.調査年
WHERE	E.軽症 > 0

UNION

SELECT	'中等症'	AS '重症度'
	,	E.中等症	AS '搬送数'
	,	A.人口 
	,	T.日別最高気温
	,	M.湿度
	,	E.都道府県コード
	,	T.都道府県
	,	T.年月日
FROM	dbo.Emergency	AS E
INNER	JOIN dbo.Temperature	AS T
ON	E.日付 = T.年月日
AND	E.都道府県コード = T.都道府県コード
INNER	JOIN	dbo.T_Moisture	AS M
ON	E.日付 = M.年月日
AND	E.都道府県コード = M.都道府県コード
INNER	JOIN	dbo.T_Population	AS A
ON	E.都道府県コード = A.都道府県コード
AND	YEAR(E.日付) = A.調査年
WHERE	E.中等症 > 0

UNION

SELECT	'重症'	AS '重症度'
	,	E.重症	AS '搬送数'
	,	A.人口 
	,	T.日別最高気温
	,	M.湿度
	,	E.都道府県コード
	,	T.都道府県
	,	T.年月日
FROM	dbo.Emergency	AS E
INNER	JOIN dbo.Temperature	AS T
ON	E.日付 = T.年月日
AND	E.都道府県コード = T.都道府県コード
INNER	JOIN	dbo.T_Moisture	AS M
ON	E.日付 = M.年月日
AND	E.都道府県コード = M.都道府県コード
INNER	JOIN	dbo.T_Population	AS A
ON	E.都道府県コード = A.都道府県コード
AND	YEAR(E.日付) = A.調査年
WHERE	E.重症 > 0

UNION

SELECT	'死亡'	AS '重症度'
	,	E.死亡	AS '搬送数'
	,	A.人口 
	,	T.日別最高気温
	,	M.湿度
	,	E.都道府県コード
	,	T.都道府県
	,	T.年月日
FROM	dbo.Emergency	AS E
INNER	JOIN dbo.Temperature	AS T
ON	E.日付 = T.年月日
AND	E.都道府県コード = T.都道府県コード
INNER	JOIN	dbo.T_Moisture	AS M
ON	E.日付 = M.年月日
AND	E.都道府県コード = M.都道府県コード
INNER	JOIN	dbo.T_Population	AS A
ON	E.都道府県コード = A.都道府県コード
AND	YEAR(E.日付) = A.調査年
WHERE	E.死亡 > 0
(77678 行処理されました)

EXCEL の散布図でプロットする

 「重症度」でフィルターをかけると,「軽症」「中等症」「重症」「死亡」に分類される.それぞれの重症度でフィルターをかけた状態で散布図のデータ系列を作成する.結果は下図の状態である.

気温・湿度別の重症度別搬送人員
気温・湿度別の重症度別搬送人員

まとめ

 気象庁のサイトから最高気温と平均湿度をダウンロードし,総務省消防庁の熱中症救急搬送人員と結合して重症度別にプロットした.

 統計学的検定は行っていないが,やるとすればロジスティック回帰分析になるだろう.湿度を加えた場合に感度と特異度が向上するのか,逆に低下するのかは興味深い.重症度別に層別解析を行うことも考えられる.

熱中症の搬送人員と最高気温との相関関係を可視化し閾値をχ二乗検定する

日最高気温と搬送人員

 最高気温と熱中症の搬送人数との間に相関関係はあるだろうか.熱中症で救急搬送された人数は総務省の消防庁のサイトにある.これと気象庁のデータを結合してみた.

“熱中症の搬送人員と最高気温との相関関係を可視化し閾値をχ二乗検定する” の続きを読む

QGIS から SQL Server へデータをアップロードする際の勘所

 QGIS から SQL Server 2008 R2 に空間データをアップロードする際には Shape2SQL というツールを使った.便利なツールではあるが,国土数値情報の河川データの属性テーブルの日本語が文字化けするという問題を抱えており,何とかならないかと試行錯誤した結果を備忘録として投稿する.

“QGIS から SQL Server へデータをアップロードする際の勘所” の続きを読む

EXCEL VBA で既存のテーブルにネットワークドライブ上の Workbook からデータを追記する

FileSystemObject と VBA の関係

 前回の記事ではフォルダーから一括してデータを読み込む方法を紹介した.今回は月次の更新ファイルを読み込んで既存のテーブルにデータを追記する方法を紹介する.

 既に読み込んだファイルは拒否したい.監査としてのワークシートが必要だ.リレーショナルデータベースならデータの一意制約から可能だが,EXCEL では自前で作る必要がある.

 色々と挑戦しがいのある課題であった.

“EXCEL VBA で既存のテーブルにネットワークドライブ上の Workbook からデータを追記する” の続きを読む

第 6 章 空間データをインポートする (Beginning Spatial with SQL Server 2008)

 多くの空間アプリケーションがカスタム定義の空間機能を組み合わせている.例えば顧客セットの局在と,広く受け入れられた表現の空間データ,地球上の汎用性のある特徴,例えば国や州の境界線,世界の主要都市の局在および主要な道路や鉄道の経路などである.この情報は自分自身で作成するよりも,多くの代替可能な資源が存在しており,そこから普通に使うための空間データを取得して空間アプリケーションに搭載できる.

 本章では,そこから一般公開された空間情報を取得できる資源,そこでそのデータが普通に提供されるフォーマットおよびその情報を SQL Server にインポートするのに使える技術を紹介しよう.

“第 6 章 空間データをインポートする (Beginning Spatial with SQL Server 2008)” の続きを読む

第 2 章 SQL Server 2008 で空間データを実装する (Beginning Spatial with SQL Server 2008)

 前章では,空間参照系の背後にある理論を紹介し,異なる種類のシステムが地球上の特徴を記述する方法を説明した.本章では,これらのシステムを適用して SQL Server 2008 における新しい空間データ型を使って空間情報を蓄積する方法を学んでもらう.

“第 2 章 SQL Server 2008 で空間データを実装する (Beginning Spatial with SQL Server 2008)” の続きを読む

第 1 章 空間情報を定義する (Beginning Spatial with SQL Server 2008)

 空間データをデータベースで扱うにあたりどうしても避けて通れないのが,空間データがデータベース内でどう扱われているかを知ることである.

 EXCEL のオブジェクトも本質を知っているわけではないが,プロパティやメソッドを知ることで「どう動いているか」は見当がつく.SQL Server でも同じことである.

“第 1 章 空間情報を定義する (Beginning Spatial with SQL Server 2008)” の続きを読む

USGSの地震データをインポートし,データベースのバックアップを取る

地震発生地域のヒートマップ

 USGS (United States Geological Survey) はアメリカ地質調査所とも呼ばれ,全世界の地震データを蓄積しているデータベースである.

 かつてここの地震データをダウンロードしたことがあった.合計 72 万件にも及ぶ巨大なファイルである.どのリンクからダウンロードしたのか,今となっては記憶が定かでない.ファイルのプロパティを見ると 2017 年 11 月作成となっていた.これを SQL Server にインポートする.

“USGSの地震データをインポートし,データベースのバックアップを取る” の続きを読む

1920年から2015年までの都道府県別の5歳階級別人口推移

1920年から2015年までの都道府県別の5歳階級別人口推移

 e-Stat を渉猟していると面白いファイルを見つけた.国勢調査は 1920 年から開始されており, 2020 年 3 月現在では最新の調査結果は 2015 年のものである.20 回分の人口データが一つのファイルにまとめられており,グラフ化するには格好のデータである.

 年齢(5歳階級),男女別-都道府県(大正9年~平成27年)というファイルである.リンク先のページにはファイルが 3 つあるが,最後のものが最も粒度が細かいので,これをグラフ化する.

年齢(5歳階級),男女別人口-都道府県(大正9年~平成27年)
年齢(5歳階級),男女別人口-都道府県(大正9年~平成27年)

“1920年から2015年までの都道府県別の5歳階級別人口推移” の続きを読む

国勢調査から5歳階級の人口推移を調べる

日本人口の年齢階級推移(国勢調査より筆者作成)

 人口統計は最も重要な基幹統計の一つである.総務省の e-Stat は確かに有用であるが,かゆいところに手が届かない.例えば「市区町村ごと,年齢5歳階級ごとの人口構成の国勢調査ごとの推移を知りたい」という要求には全く無力である.

 主として技術的な理由によるものと,統計調査の粒度の細かさによる.技術的な理由としては,データベースの画面表示セル数の上限を容易に超えてしまうデータ量になってしまうことである.しかし,根本的な理由は調査の粒度の細かさである.

 2005 年以前と 2010 年以降とでは調査の精度が違う.今後は高精度なデータファイルが e-Stat に掲載されていくものと思われるが,2005 年以前に関しては都道府県より細かい粒度は存在しない.そこを求めると手作業になってしまい,現実的ではない.国立社会保障・人口問題研究所ならデータを持っているかもしれない.

 2020 年は国勢調査の年にあたる.総務省にはできるだけ細かい粒度でのデータ掲載を望むものである.

“国勢調査から5歳階級の人口推移を調べる” の続きを読む