都道府県ごとの河川データを1つのcsvファイルに変換する

CSVテキストレイヤをベクタレイヤとして追加した結果

 河川データを都道府県別ではなく,水域別に抽出したい.そんな動機から QGIS と EXCEL の間を行ったり来たりしている.QGISで都道府県ごとの河川データをマージするではかなり無謀なことをやった.今回はもう少し丁寧にデータを扱ってみたい.

“都道府県ごとの河川データを1つのcsvファイルに変換する” の続きを読む

1920年から2015年までの都道府県別の5歳階級別人口推移

1920年から2015年までの都道府県別の5歳階級別人口推移

 e-Stat を渉猟していると面白いファイルを見つけた.国勢調査は 1920 年から開始されており, 2020 年 3 月現在では最新の調査結果は 2015 年のものである.20 回分の人口データが一つのファイルにまとめられており,グラフ化するには格好のデータである.

 年齢(5歳階級),男女別-都道府県(大正9年~平成27年)というファイルである.リンク先のページにはファイルが 3 つあるが,最後のものが最も粒度が細かいので,これをグラフ化する.

年齢(5歳階級),男女別人口-都道府県(大正9年~平成27年)
年齢(5歳階級),男女別人口-都道府県(大正9年~平成27年)

“1920年から2015年までの都道府県別の5歳階級別人口推移” の続きを読む

厚労省「地域ごとのまん延の状況に関する指標等」の PDF から Power BI Desktop でデータを抽出し EXCEL のグラフに表現する

各都道府県の新型コロナウイルス確定患者数の推移

 新型コロナウイルスのパンデミック宣言以降,Twitter でフォローしているアカウントに自然と相互協調の動きがみられる.

 このツイートから始まった一連のやりとりで,厚労省の発表した PDF からテーブルを抽出するくだりに注目した.

 今回はここを画像つきで実施してみた.

“厚労省「地域ごとのまん延の状況に関する指標等」の PDF から Power BI Desktop でデータを抽出し EXCEL のグラフに表現する” の続きを読む

国勢調査から5歳階級の人口推移を調べる

日本人口の年齢階級推移(国勢調査より筆者作成)

 人口統計は最も重要な基幹統計の一つである.総務省の e-Stat は確かに有用であるが,かゆいところに手が届かない.例えば「市区町村ごと,年齢5歳階級ごとの人口構成の国勢調査ごとの推移を知りたい」という要求には全く無力である.

 主として技術的な理由によるものと,統計調査の粒度の細かさによる.技術的な理由としては,データベースの画面表示セル数の上限を容易に超えてしまうデータ量になってしまうことである.しかし,根本的な理由は調査の粒度の細かさである.

 2005 年以前と 2010 年以降とでは調査の精度が違う.今後は高精度なデータファイルが e-Stat に掲載されていくものと思われるが,2005 年以前に関しては都道府県より細かい粒度は存在しない.そこを求めると手作業になってしまい,現実的ではない.国立社会保障・人口問題研究所ならデータを持っているかもしれない.

 2020 年は国勢調査の年にあたる.総務省にはできるだけ細かい粒度でのデータ掲載を望むものである.

“国勢調査から5歳階級の人口推移を調べる” の続きを読む

国勢調査から職業別の年齢階級グラフを作ってみた

そもそも電力事業者の従業員数はどれだけなのか?

 ヒントは経済産業省の平成29年度電力市場環境調査にあった.20 ページに就業人員の調査という項目があり,その下に統計データからの推計値がある.

 日本標準産業分類で 331 電気業が 142800 名,日本標準職業分類で 641 発電員・変電員が 32800 名とある.これは 2015 年の国勢調査に基づいている.なら,次は元のデータに当たろう.

“国勢調査から職業別の年齢階級グラフを作ってみた” の続きを読む