オーストラリアでの住所からのジオコーディングはGeoscape社が担当しており,そのプロジェクト名をG-NAFという.オーストラリア政府から補助金を受けており,2029年まで無料公開されることが決まっている.
データ数は1500万件以上,空間参照系はGDA94(EPSG: 4283)またはGDA2020(EPSG: 7844)である.
今回はSQL Serverでデータベースからテーブル作成,データのインポート,テーブルへの主キーと外部キーの作成までを行う.
Co-evolution of human and technology
オーストラリアでの住所からのジオコーディングはGeoscape社が担当しており,そのプロジェクト名をG-NAFという.オーストラリア政府から補助金を受けており,2029年まで無料公開されることが決まっている.
データ数は1500万件以上,空間参照系はGDA94(EPSG: 4283)またはGDA2020(EPSG: 7844)である.
今回はSQL Serverでデータベースからテーブル作成,データのインポート,テーブルへの主キーと外部キーの作成までを行う.
総務省の公開しているe-Statには社会疫学的指標が多く含まれる.今回熱中症搬送人員数に様々な指標を加えて解析してみた.
説明変数として日最高気温,日平均水蒸気圧,都道府県人口に加えて過去30日間の平均気温,エアコン保有台数,年間収入のジニ係数,光熱・水道費,実収入,第1次産業就業者比率,第2次産業就業者比率,都市公園数,都市緑化割合,自然公園割合,自然公園数,生活保護被保護人員を加えた.
すべての変数が有意であったが,VIFを見ると多重共線性を疑わせる変数もあり,良いモデルとは言えない結果となった.
熱中症の搬送人員数が月平均気温と負の相関があるとの情報を得た.普段涼しい地域ほど日最高気温の上昇に弱いという意味である.普段涼しいということを表現するには過去30日間の日平均気温の平均を取ればよいだろうと判断した.こうなるとSQL Serverのウィンドウ関数の出番である.
以前の記事では都道府県人口の対数をオフセット項として一般化線形回帰分析を行った.実際のところ,年代別の搬送人員としては65歳以上の高齢者が圧倒的に多い.そのため,東京など労働人口の多いところでは予測性能が悪化する可能性がある.今回はオフセット項の都道府県人口を3区分に分け,65歳以上人口の対数をオフセット項として採用してみたところ予測性能が改善したと思われたので記事とした.
気象庁の過去の気象データ・ダウンロードからは膨大な気象データをダウンロードできる.今回の記事ではSQL Server内に構築した熱中症データベースに日平均風速のテーブルを追加する.
以前の記事ではポアソン回帰モデルおよび負の二項分布モデルを用いて熱中症搬送人員数に対する日最高気温と平均水蒸気圧の回帰係数を推定した.
人口10万人あたり何名の罹患者数,というのは割り算値である.総務省消防庁の公開している熱中症搬送人員数は都道府県ごとの搬送数であり,もともと都道府県別人口が異なるのだから搬送人員数を都道府県人口で割った割合のほうが指標として適切なのではないか,という指摘は一理ある.
しかし,割り算値ではなく実数を解析すべきである.変形した観測値を統計モデルの応答変数にするのは不必要であるばかりか,誤った結果を導きかねないからである.割り算値からは確からしさの情報が失われること,変換された値の分布が不明であることから,割り算値は避けるべきである.その代わりに割り算の分母をオフセット項として線形予測子に組み込む手法がある.
熱中症搬送人員数はカウントデータであり,その期待値は集計ゾーンの集計対象人口に依存する.都道府県人口をオフセット項とすることで,都道府県の人口規模の影響を調整した回帰分析ができる.今回は都道府県人口をオフセット項として線形予測子に組み込み,一般化線形回帰分析を行ってみた.
全国には避難施設が約 12 万箇所ある.それらの位置データを SQL Server にアップロードしたい.何度か試行錯誤の結果アップロードに成功したので備忘録として公開する.
以前の投稿(Shape2SQL でシェープファイルを SQL Server 2008 R2 にアップロードする)で国土数値情報ダウンロードサービスの医療圏データが文字化けしていると記述した.改めてダウンロードして SQL Server にアップロードしたところ,いつの間にか文字化けが直っていた.以前にも河川データの文字化けを指摘したことがあるが,こちらも修正されていた(国土数値情報の河川データが一部直っていた件).どうやら国土交通省に指摘すると修正してくれるらしい.
国土数値情報ダウンロードサービスには医療機関や医療圏の位置情報もある.今回は医療機関の Point データをダウンロードし,SQL Server にアップロードする方法を見つけたので備忘録として記載する.
“国土数値情報の医療機関のPointデータをダウンロードしQGIS経由でSQL Serverにアップロードする” の続きを読む
小地域の境界データはeStatで入手できる.市区町村の境界データは国土数値情報から入手できる.しかし都道府県の境界データは公的機関からは公表されていない.不思議である.今回は国土地理院の地球地図日本ダウンロードというサービスから都道府県の境界データを作成した.